PAGE

Generic Test Plan (file, properties, summary, title to change)
page2 of 15

Generic Test Plan (file, properties, summary, title to change)

Author: <Author Name>

Date: <revision date>

Index

2

Index

Revision History
4

Introduction
4

Goal of Project and Feature Team
4

Primary Testing Concerns
4

Primary Testing Focus
4

References
4

Personnel
4

Testing Schedule
4

Feature History
5

Features:
5

Files and Modules:
5

Files List:
5

Registry, INI Settings:
5

Setup Procedures:
5

De-installation Procedures
5

Database Setup and Procedures
5

Network Domain/Topologies Configuration Procedures
5

Performance Monitoring Counters Setup And Configurations
6

Operational Issues
6

Backup
6

Recovery
6

Archiving
6

Monitoring
6

Operational Problem Escalation/Alert Methods
6

Scope of Test Cases
6

Acceptance Criteria
6

Key Feature Issues
6

Test Approach
6

Design Validation
6

Data Validation
6

API Testing
6

Content Testing
7

Low-Resource Testing
7

Setup Testing
7

Modes and Runtime Options
7

Interoperability
7

Integration Testing
7

Compatibility: Clients
7

Compatibility: Servers
7

Beta Testing
7

Environment/System - General
8

Configuration
8

User Interface
8

Performance & Capacity Testing
8

Scalability
8

Stress Testing
8

Volume Testing
8

International Issues
8

Robustness
8

Error Testing
9

Usability
9

Accessibility
9

User Scenarios
9

Boundaries and Limits
9

Special Code Profiling and Other Metrics
9

Test Environment
10

Operating Systems
10

Networks
10

Hardware
10

Machines
10

Graphics Adapters
10

Extended and Expanded Memory Boards
10

Other Peripheral
10

Software
10

Unique Testing Concerns For Specific Features
11

Area Breakdown
11

Feature Name
11

Sub Feature One
11

sub 1.1
11

sub 1.2
12

sub 1.3
12

Sub Feature Two
12

Sub Feature Three (etc.)
12

Spec Review Issues
13

Test Tools
13

Smoke Test (acceptance test, build verification, etc.)
13

Automated Tests
13

Manual Tests
14

Regression Tests
14

Bug Bashes
14

Bug Reporting
14

Plan Contingencies
14

External Dependencies
14

Headcount Requirements
14

Product Support
14

Testing Schedule
14

Drop Procedures
14

Release Procedures
15

Alias/Newsgroups and Communication Channels
15

Regular Meetings
15

Feature Team Meetings
15

Project Test Team Meetings
15

Feature Team Test Meetings
15

Decisions Making Procedures
15

Notes
15

Revision History

First Draft:
<author>
<date>

<brief description of changes>

Introduction

Single sentence describing the intent and purpose of the test plan. For example “This test plan addresses the test coverage for the XXX release of the BAR area of feature Foo”.

Goal of Project and Feature Team

Mission statement and goal of overall project team.

Mission statement and goal of specific feature team.

This section is used to set the stage for testing’s plans and goals in relation to the feature team and project’s goals.

Primary Testing Concerns

A statement of what the main critical concerns of the test plan are. An itemized list, or short paragraph will suffice.

Primary Testing Focus

A short statement of what items testing will focus on. The testing concerns above state what testing is worried about. Focus indicates more of a methodology - a statement of how those concerns will be addressed via focus.

References

· document name
location

· test plan
test plan location

· project specifications
project spec location

· feature specification
feature spec location

· development docs on feature
dev doc location

· bug database queries
location for raid queries

· test case database queries
location for test case queries

· schedule documents
location for schedule documents

· build release server
location of build releases

· source file tree
location of source file tree

· other related documents
other locations

Personnel

Program Manager:
name and email

Developer:
name and email

Tester:
name and email

Testing Schedule

Break the testing down into phases (ex. Planning, Case Design, Unit & Component Tests, Integration Tests, Stabilization, Performance and Capacity Tuning, Full Pass and Shipping) - and make a rough schedule of sequence and dates. What tasks do you plan on having done in what phases? This is a brief, high level summary - just to set expectation that certain components will be worked on at certain times - and to indicate that the plan is taking project schedule concerns into consideration.

Include a pointer to more detailed feature and team schedules here.

Feature History

A history of how the feature was designed, and evolved, over time. It is a good idea to build this history up as test plans go. This gives a good feel for why the current release is focusing on what it has done. It also serves a good framework for where problems have been in the past.

A paragraph or two is probably sufficient for each drop, indicating - original intent, feedback and successes, problems, resolutions, things learned from the release, major issues dealt with or discovered in the release.

Basically, this section is a mini post-mortem. It is eventually finishes with a statement regarding the development of the specific version.

It is often helpful to update this history at each milestone of a project.

Features:

This section gives a breakdown of the areas of the feature. It is often useful to include in this section a per area statement of testing’s thoughts. What type of testing is best used for each area? What is problematic about each area? Has this area had a problem in the past. Quick statements are all that is need in this list.

NOTE: this is only here as a high level summary of the features. The real meat is in the area breakdown. This is a tad redundant in that respect...

Files and Modules:

Include in this section any files, modules and code that must be distributed on the machine, and where they would be located. Also include registry settings, INI settings, setup procedures, de-installation procedures, special database and utility setups, and any other relevant data.

 Files List:

filename
purpose
location on machine

 Registry, INI Settings:

setting1 purpose

Setting1
possible values

setting 2 purpose

Setting 2
possible values

 Setup Procedures:

1. blah

2. blah

 De-installation Procedures

1. blah

2. blah

 Database Setup and Procedures

1. blah

2. blah

 Network Domain/Topologies Configuration Procedures

1. blah

2. blah

 Performance Monitoring Counters Setup And Configurations

Operational Issues

Is the program being monitored/maintained by an operational staff? Are there special problem escalation, or operational procedures for dealing with the feature/program/area?

 Backup

 Recovery

 Archiving

 Monitoring

 Operational Problem Escalation/Alert Methods

Scope of Test Cases

Statement regarding the degree and types of coverage the testing will involve. For example, will focus be placed on performance? How about client v.s. server issues? Is there a large class of testing coverage that will be intentionally overlooked or minimized? Will there be much unit and component testing? This is a big sweeping picture of the testing coverage - giving an overall statement of the testing scope.

Acceptance Criteria

How is “Good Enough To Ship” defined for the project? For the feature? What are the necessary performance, stability and bug find/fix rates to determine that the product is ready to ship?

Key Feature Issues

What are the top problems/issues that are recurring or remain open in this test plan? What problems remain unresolved?

Test Approach

 Design Validation

Statements regarding coverage of the feature design - including both specification and development documents. Will testing review design? Is design an issue on this release? How much concern does testing have regarding design, etc. etc..

 Data Validation

What types of data will require validation? What parts of the feature will use what types of data? What are the data types that test cases will address? Etc.

 API Testing

What level of API testing will be performed? What is justification for taking this approach (only if none is being taken)?

 Content Testing

Is your area/feature/product content based? What is the nature of the content? What strategies will be employed in your feature/area to address content related issues?

 Low-Resource Testing

What resources does your feature use? Which are used most, and are most likely to cause problems? What tools/methods will be used in testing to cover low resource (memory, disk, etc.) issues?

 Setup Testing

How is your feature affected by setup? What are the necessary requirements for a successful setup of your feature? What is the testing approach that will be employed to confirm valid setup of the feature?

 Modes and Runtime Options

What are the different run time modes the program can be in? Are there views that can be turned off and on? Controls that toggle visibility states? Are there options a user can set which will affect the run of the program? List here the different run time states and options the program has available. It may be worthwhile to indicate here which ones demonstrate a need for more testing focus.

 Interoperability

How will this product interact with other products? What level of knowledge does it need to have about other programs -- “good neighbor”, program cognizant, program interaction, fundamental system changes? What methods will be used to verify these capabilities?

 Integration Testing

Go through each area in the product and determine how it might interact with other aspects of the project. Start with the ones that are obviously connected, but try every area to some degree. There may be subtle connections you do not think about until you start using the features together. The test cases created with this approach may duplicate the modes and objects approaches, but there are some areas which do not fit in those categories and might be missed if you do not check each area.

 Compatibility: Clients

Is your feature a server based component that interacts with clients? Is there a standard protocol that many clients are expected to use? How many and which clients are expected to use your feature? How will you approach testing client compatibility? Is your server suited to handle ill-behaved clients? Are there subtleties in the interpretation of standard protocols that might cause incompatibilities? Are there non-standard, but widely practiced use of your protocols that might cause incompatibilities?

 Compatibility: Servers

Is your feature a client based component that interacts with servers? Is there a standard protocol supported by many servers that your client speaks? How many different servers will your client program need to support? How will you approach testing server compatibility? Is your client suited to handle ill-behaved or non-standard servers? Are there subtleties in the interpretation of standard protocols that might cause incompatibilities? Are there non-standard, but widely practiced use of protocols that might cause incompatibilities?

 Beta Testing

What is the beta schedule? What is the distribution scale of the beta? What is the entry criteria for beta? How is testing planning on utilizing the beta for feedback on this feature? What problems do you anticipate discovering in the beta? Who is coordinating the beta, and how?

 Environment/System - General

Are there issues regarding the environment, system, or platform that should get special attention in the test plan? What are the run time modes and options in the environment that may cause difference in the feature? List the components of critical concern here. Are there platform or system specific compliance issues that must be maintained?

 Configuration

Are there configuration issues regarding hardware and software in the environment that may get special attention in the test plan? Some of the classical issues are machine and bios types, printers, modems, video cards and drivers, special or popular TSR’s, memory managers, networks, etc. List those types of configurations that will need special attention.

 User Interface

List the items in the feature that explicitly require a user interface. Is the user interface designed such that a user will be able to use the feature satisfactorally? Which part of the user interface is most likely to have bugs? How will the interface testing be approached?

 Performance & Capacity Testing

How fast and how much can the feature do? Does it do enough fast enough? What testing methodology will be used to determine this information? What criterion will be used to indicate acceptable performance? If modifications of an existing product, what are the current metrics? What are the expected major bottlenecks and performance problem areas on this feature?

 Scalability

Is the ability to scale and expand this feature a major requirement? What parts of the feature are most likely to have scalability problems? What approach will testing use to define the scalability issues in the feature?

 Stress Testing

How does the feature do when pushed beyond its performance and capacity limits? How is its recovery? What is its breakpoint? What is the user experience when this occurs? What is the expected behavior when the client reaches stress levels? What testing methodology will be used to determine this information? What area is expected to have the most stress related problems?

 Volume Testing

Volume testing differs from performance and stress testing in so much as it focuses on doing volumes of work in realistic environments, durations, and configurations. Run the software as expected user will - with certain other components running, or for so many hours, or with data sets of a certain size, or with certain expected number of repetitions.

 International Issues

Confirm localized functionality, that strings are localized and that code pages are mapped properly. Assure program works properly on localized builds, and that international settings in the program and environment do not break functionality. How is localization and internationalization being done on this project? List those parts of the feature that are most likely to be affected by localization. State methodology used to verify International sufficiency and localization.

 Robustness

How stable is the code base? Does it break easily? Are there memory leaks? Are there portions of code prone to crash, save failure, or data corruption? How good is the program’s recovery when these problems occur? How is the user affected when the program behaves incorrectly? What is the testing approach to find these problem areas? What is the overall robustness goal and criteria?

 Error Testing

How does the program handle error conditions? List the possible error conditions. What testing methodology will be used to evoke and determine proper behavior for error conditions? What feedback mechanism is being given to the user, and is it sufficient? What criteria will be used to define sufficient error recovery?

 Usability

What are the major usability issues on the feature? What is testing’s approach to discover more problems? What sorts of usability tests and studies have been performed, or will be performed? What is the usability goal and criteria for this feature?

 Accessibility

Is the feature designed in compliance with accessibility guidelines? Could a user with special accessibility requirements still be able to utilize this feature? What is the criteria for acceptance on accessibility issues on this feature? What is the testing approach to discover problems and issues? Are there particular parts of the feature that are more problematic than others?

 User Scenarios

What real world user activities are you going to try to mimic? What classes of users (i.e. secretaries, artist, writers, animators, construction worker, airline pilot, shoemaker, etc.) are expected to use this program, and doing which activities? How will you attempt to mimic these key scenarios? Are there special niche markets that your product is aimed at (intentionally or unintentionally) where mimic real user scenarios is critical?

 Boundaries and Limits

Are there particular boundaries and limits inherent in the feature or area that deserve special mention here? What is the testing methodology to discover problems handling these boundaries and limits?

 Operational Issues

If your program is being deployed in a data center, or as part of a customer's operational facility, then testing must, in the very least, mimic the user scenario of performing basic operational tasks with the software.

Backup

Identify all files representing data and machine state, and indicate how those will be backed up. If it is imperative that service remain running, determine whether or not it is possible to backup the data and still keep services or code running.

Recovery

If the program goes down, or must be shut down, are there steps and procedures that will restore program state and get the program or service operational again? Are there holes in this process that may make a service or state deficient? Are there holes that could provide loss of data. Mimic as many states of loss of services that are likely to happen, and go through the process of successfully restoring service.

Archiving

Archival is different from backup. Backup is when data is saved in order to restore service or program state. Archive is when data is saved for retrieval later. Most archival and backup systems piggy-back on each other's processes.

Is archival of data going to be considered a crucial operational issue on your feature? If so, is it possible to archive the data without taking the service down? Is the data, once archived, readily accessible?

Monitoring

Does the service have adequate monitoring messages to indicate status, performance, or error conditions? When something goes wrong, are messages sufficient for operational staff to know what to do to restore proper functionality? Are the "hearbeat" counters that indicate whether or not the program or service is working? Attempt to mimic the scenario of an operational staff trying to keep a service up and running.

Upgrade

Does the customer likely have a previous version of your software, or some other software? Will they be performing an upgrade? Can the upgrade take place without interrupting service? Will anything be lost (functionality, state, data) in the upgrade? Does it take unreasonably long to upgrade the service?

Migration

Is there data, script, code or other artifacts from previous versions that will need to be migrated to a new version? Testing should create an example of installation with an old version, and migrate that example to the new version, moving all data and scripts into the new format.

List here all data files, formats, or code that would be affected by migration, the solution for migration, and how testing will approach each.

 Special Code Profiling and Other Metrics

How much focus will be placed on code coverage? What tools and methods will be used to measure the degree to which testing coverage is sufficiently addressing all of the code?

Test Environment

What are the requirements for the product? They should be reflected in the breadth of hardware configuration testing.

 Operating Systems

Identify all operating systems under which this product will run. Include version numbers if applicable.

 Networks

Identify all networks under which this product will run. include version numbers if applicable.

 Hardware

Identify the various hardware platforms and configurations.

Machines

Graphics Adapters

This includes the requirements for single or dual monitors.

Extended and Expanded Memory Boards

Other Peripheral

Peripherals include those necessary for testing such as CD-ROM, printers, modems, faxes, external hard drive, tape readers, etc.

 Software

Identify software included with the product or likely to be used in conjunction with this product. Software categories would include memory managers, extenders, some TSRs, related tools or products, or similar category products.

Unique Testing Concerns For Specific Features

List specific features which may require more attention than others, and describe how testing will approach these features. This is to serve as a sort of “hot list”.

Area Breakdown

This is a detailed breakdown of the feature or area - and is best done in an outline format. It is useful as a tool later when building test cases. The outline of an area can go on quite long. Usually it starts with a menu breakdown, and then continues on with those features and functionalities not found on any menu in particular.

 Feature Name

Sub Feature One

sub 1.1

Feature testing approach matrix: this will repeat for each subitem, including any class of testing relevant to any item. Put in NA if not applicable. Location of this matrix in the hierarchy determines scope. For example, data validation rules global to anything under Sub Feature One should go under “Sub Feature One”. Inheritance should be implied.

	Class
	Info
	Auto?
	Man.?

	Design Validation
	
	
	

	Data Validation
	Valid data & expected results (e.g. “alphanumeric”)

Invalid data & expected results (e.g. “no ‘;’, ‘/’ or ‘@’)

How to validate?
	
	

	API Testing
	What are the API’s exposed? What are the permutations of calling these API’s (order, specific args, etc.)?
	
	

	Content Testing
	What content exercises this feature?

What content does this feature produce, modify or manage?
	
	

	Low-Resource Testing
	What resource dimensions to test?

What to do when resource is low?
	
	

	Setup Testing
	What types of setups?

How to confirm feature after a setup?
	
	

	Modes & Runtime Options
	What modes and runtime options does this have?

What should be tested during these modes?

What are expected results in different modes?
	
	

	Interoperability
	What do we interoperate with? Do what action with it?
	
	

	Integration Testing
	What do we integrate with? Do what action with it?
	
	

	Compatibility: Clients
	What clients? Doing what actions?
	
	

	Compatibility: Servers
	What servers? Doing what actions?
	
	

	Beta Testing
	
	
	

	Environment/System
	What environmental issues apply to this? What to do to expose?
	
	

	Configuration
	What environmental issues apply to this? What to do to expose?
	
	

	User Interface
	What are the interface points? How to exercise them?
	
	

	Performance
	What are the target performance dimensions?

What will you do to exercise these?
	
	

	Capacity
	What is the target capacity?

What will you do to test this?
	
	

	Scalability
	What is the target scale, and how?

What will you do to test this?
	
	

	Stress
	What dimensions do you plan on stressing? What is expectation? How will you stress it?
	
	

	Volume Tests
	What actions will be included in volume tests?
	
	

	International
	What are the international problems of this item?
	
	

	Robustness
	What robustness (crashes, corruption, etc.) errors are anticipated? How will you look for them?
	
	

	Error Testing
	What are the relevant error conditions that the program expects?

What are the error situations you plan on simulating?
	
	

	Usability
	What are the usability issues about this item?
	
	

	Accessibility
	What are the accessibility issues about this item?
	
	

	User Scenarios
	How would a user typically use this item?

What tests will you do to simulate user scenarios?
	
	

	Boundaries and Limits
	What are the boundary conditions surrounding this item?

What are the limits of this item?

Max Values? Minimum Values?
	
	

	Special Code Profiling and Other Metrics
	
	
	

	Schedule
	When?
	
	

	Code Paths and Sequences?
	What are the different ways to invoke or activate this item? What are things you can do just before this item that are supposed to change the way it operates? What should NOT change the way it operates?
	
	

sub 1.2

sub 1.3

Sub Feature Two

Sub Feature Three (etc.)

Test Case Structure

Where will test cases be stored? What is the naming scheme? What is the organizing structure? How do test cases correlate to the test plan?

RECOMMENDED:

The test case structure follows the area breakdown structure highlighted above. Test cases will be stored in the TCM database. TCM was chosen because it supports arbitrary depths of hierarchy, and because it SQL based - allowing a great deal of flexibility in reporting, database management, etc.

In TCM, the left pane holds the hierarchy, the right pane holds instances of test cases. The left pane will follow the hierarchy through all the levels of feature detail, and then add one more level to express test class types. For example, one might see the following hierarchy in the left pane:

Word

 Editing

 Format

 Font

 Typeface

 Data Validation

 Errors

 Boundaries

 Limits

 Etc.

 Style

 Etc.

 Paragraph

Test cases can exist at any level, but it is recommend that they be entered at the terminal level of the hierarchy so that they can be easily associated with similar classes of testing. When a given level is selected, the list of test cases associated with it is shown in the right pane.

This hierarchy allows one to avoid needing to follow numbering schemes (which are a pane to maintain and organized), allows you to express a test's location in the tree with a "item.item.item.item" naming convention, and allows one to determine to what degree different classes of tests are covered for each feature. It is recommended that if a class is being skipped that an explanatory entry be placed in the right pane justifying why tests of that class are not relevant.

The intent is to make this document drive the creation and evaluation of the test cases.

Spec Review Issues

Indicate location and method being used for reporting problems against the specification and design.

Test Tools

List whatever test tools will be used, or need to be written, and for what purpose. It is often best to point to an external location for more details, as tools usually require an entire plan and architectural summary of their own.

Smoke Test (acceptance test, build verification, etc.)

The smoke test determines whether or not the build is good enough to be submitted to testing. This section gives a statement of what the basic smoke test consists of, how it is design, and how it will be performed. A pointer to suite locations is helpful here too.

Automated Tests

What degree of automation will be used testing this area? What platform/tools will be used to write the automated tests? What will the automation focus on? Where are the automated tools, suites and sources checked in?

Manual Tests

What sorts of items will be tested manually rather than via automation? Why is manual testing being chosen over automation? Where are the manual tests defined and located?

Regression Tests

What is your general regression strategy? Are you going to automate? Where are the regressions stored? How often will they be re-run?

Bug Bashes

What is your strategy for bug bashes? How many? What goals? What incentives? What areas are targetted to be bashed? By who?

Bug Reporting

What tool(s) will be used to report bugs, and where are the bug reports located? Are there any special pieces of information regarding categorization of bugs that should be reported here (areas, keywords, etc.)?

Plan Contingencies

Is there anything that may require testing’s plans to change? Briefly describe how you plan to react to those changes.

External Dependencies

Are there any groups or projects external to the team that are dependent on your feature, or that your feature is dependent on? What testing problems and issues does this create? How are deliverables from external groups going to be tested and confirmed with your own feature? Who are the individuals serving as primary contact and liaison in this relationship?

Headcount Requirements

How many people will it require to implement these plans? Are there currently enough people on staff right now? What effect will hiring more or less people have (slip in schedule, quality, or something else?).

Product Support

What aspects of this feature have been a problem for support in the past? How are those problems being addressed? What aspects of this feature will likely cause future support problems? How are those problems being resolved? What testing methodology is being used to prevent future support problems? How is information being sent to support regarding problems and functionality of the feature?

Testing Schedule

Break the testing down into phases (ex. Planning, Case Design, Unit & Component Tests, Integration Tests, Stabilization, Performance and Capacity Tuning, Full Pass and Shipping) - and make a rough schedule of sequence and dates. What tasks do you plan on having done in what phases? This is a brief, high level summary - just to set expectation that certain components will be worked on at certain times - and to indicate that the plan is taking project schedule concerns into consideration.

Include a pointer to more detailed feature and team schedules here.

Drop Procedures

Define the methodology for handing off the code between Development and Testing.

Release Procedures

Describe the step-wise process for getting the product from the network testing version to ready-to-ship master diskette sets.

Alias/Newsgroups and Communication Channels

List any email aliases and what they are for. List any bulletin boards, newsgroups, or other communication procedures and methodologies here.

Regular Meetings

For each meeting, when, where, what is general agenda.

 Feature Team Meetings

 Project Test Team Meetings

 Feature Team Test Meetings

Decisions Making Procedures

Who reviews decision points for the following sorts of things: build approval, bug triage, feature sign off, test plan sign off, development design sign off? What is the process for the various decisions?

Notes

1. Areas in Red(() are flagged as such to express spec items that are non-existing, incomplete, unclear, or being considered as issues.

2. Areas in Blue(() are flagged as such to express an important issue that needs definition and/or resolution.

PAGE

 9/3/01

Generic_Test_Plan.dot

Revision 2

