CS152
Computer Architecture and Engineering
Lecture 1

January 18, 1995

Dave Patterson & Shing Kong

cs 152 Intro.1 ©DAP & SIK 1995

Overview of Today’s Lecture

° Course Overview (20 minutes: Dave Patterson)
° Administrative Matters (3 minutes: DP)

° Course Philosophy and Structure (10 min: DP)
° Level of Representation (15 min: DP)

° Break (5 min)

° Levels of Organization (25 min: Kong)

cs 152 Intro.2 ©DAP & SIK 1995

CS152: Course Overview

Computer Design

T

Instruction Set Deign Computer Hardware Design
° Machine Language . R

. o °Machine Implementation
Compiler View

° "Computer Architecture” ° Logic Designer's View

° "Instruction Set Processor" o “processor Architecture”

"Building Architect” °"Computer Organization”

"Construction Engineer"

cs 152 Intro.3 ©DAP & SIK 1995

Instruction Set Architecture

... the attributes of a [computing] system as seen by the
programmer, i.e. the conceptual structure and functional
behavior, as distinct from the organization of the data
flows and controls the logic design, and the physical
implementation.

Amdahl, Blaaw, and Brooks, 1964
SOFTWARE

Organization of Programmable
Storage

Data Types & Data Structures: I'I'I'I__I'I'I /

Encodings & Representations

Instruction Formats > == : z

Instruction (or Operation Code) Set

Modes of Addressing and Accessing Data Items and Instructions

Exceptional Conditions

cs 152 Intro.4 ©DAP & SIK 1995

Organization

ISA Level

FUs & Interconnect
Logic Designer's View

- Capabilities & Performance Characteristics of Principal
Functional Units

(e.g., Registers, ALU, Shifters, Logic Units, etc.
Ways in which these components are interconnected

nature of information flows between components
logic and means by which

such information flow is controlled.

Choreography of FUs to realize the ISA

Register Transfer Level Description /ﬁ

e

cs 152 Intro.5 ©DAP & SIK 1995

What is "Computer Architecture”

° Co-ordination of levels of abstraction

Application

Operating
Compiler] System _
Instruction Set

Architecture

| Instr. Set Proc. [I/O system |

| Digital Design |
Circuit Design

°Under a set of rapidly changing Forces

cs 152 Intro.6 ©DAP & SIK 1995

Forces on Computer Architecture

Programming
Technology Languages

T Computer
Architecture

Operating
Systems

Applications

History
(A=F/M)

cs 152 Intro.7 ©DAP & SIK 1995

Technology: Microprocessor Logic Density

10000000 .
4400
n
1000000 ph0is6n
é
» 30286 /

100000 . #3010

A
10000
,Aoab
008

114004

1000
1970 1975 1980 1985 1990 1995 2000

Memory: 4x every 3 years

cs 152 Intro.8 ©DAP & SIK 1995

Performance Trends

1000
=
o 100 Supercomputers
o -
c -
@®© - =
E 10
8 - IVIiIIi\,UIIquLch
B /, /,I'
o 1 Microprocessors
= =
P z_
0.1 M:III|=||||=||||=||||:||||:||||:
1965 1970 1975 1980 1985 1990 1995 2000
Year
cs 152 Intro.9 ©DAP & SIK 1995

CPU and LAN Performance

Relative
Performance
A
CPU
/" (spec)

1000 /

/ _LAN

DEC 1Gb

100 pha EIZ IV_I’

MIPS /‘//

10 M/120

=100 Mb FDDI
10 M
1 » Year
1980 1985 1990 1995 2000

cs 152 Intro.10 ©DAP & SIK 1995

Levels of Representation

temp = v[K];

High Level Language
Program

v[K] = v[k+1];

Compiler

v[k+1] = temp;

lw $15, 0($2)

Assembly Language
Program Iw $16, 4($2)
Assembler sw$16, 0($2)

Machine Language
Program

sw$15, 4($2)

Machine Interpretation

Control Signal Spec

cs 152 Intro.11

©DAP & SIK 1995

MIPS R3000 Instruction Set Architecture

o

Instruction Categorie

S

* Load/Store
» Computational RO - R31
* Jump and Branch
* Floating Point
- coprocessor
* Memory Management PC |
* Special HI
[LO |
Instruction Format
| oP | rs | rt | rd | sa |funct |
| op | rs | rt | immediate |
I

target |

cs 152 Intro.12

©DAP & SIK 1995

Measurement and Evaluation

Architecture is an iterative process
Design -- searching the space of possible designs
) -- at all levels of computer systems

Analysis

Creativi

\ Good ldeas
\/ Mediocre Ideas

Bad Ideas

cs 152 Intro.13 ©DAP & SIK 1995

CS152: Course Overview (cont)

Computer Design

/\

Instruction Set Deign Computer Hardware Design
° Machine Language ° Machine Implementation\

° Compiler View ° Logic Designer's View

° "Computer Architecture” °"Processor Architecture"

° "Instruction Set Processor” ° "Computer Organization"
"Building Architect" Construction Engineer

Few people design computers! Very few design instruction sets!
Many people design computer components.
Very many people are concerned with computer function, in detail.

cs 152 Intro.14 ©DAP & SIK 1995

CS152:So what's in it for me?

° In-depth understanding of the inner-workings of modern computers,
their evolution, and trade-offs present at the hardware/software

boundary.

* Insight into fast/slow operations that are easy/hard to
implementation hardware

° Experience with the design process in the context of a large complex
(hardware) design.

* Functional Spec --> Control & Datapath --> Physical implementation
* Modern CAD tools

° Designer's "Intellectual" toolbox.

cs 152 Intro.15

©DAP & SIK 1995

CS152: Computer Architecture and Engineering

Instructor:

T.A's:

Text:

cs 152 Intro.16

David A. Patterson Shing I. Kong (“Kong”)

DAP Office: 635 Soda Hall, 642-6587 patterson@cs

DAP Office Hours: Wed Fri. 2-3 or by appt.

SIK Office: 615 Soda Hall, 415-786-6377
shing.kong@eng.sun.com

SIK Office Hours: Wed Fri. 2-3 (lecture day) or by phone

Young Hyun Cho young@uclink.berkeley.edu
Kim Liu kliu@cs.berkeley.edu

Lloyd Huang lhuang@cs.berkeley.edu
Nikunj Oza oza@cs.berkeley.edu
Trevor Pering pering@eecs.berkeley.edu
Mark Spiller mds@ic.eecs.berkeley.edu

Computer Organization & Design

The Hardware / Software Interface
©DAP & SIK 1995

Course Philosophy

° Lecture style
» 20-Minute Lecture
» 3- Minute Administrative Matters
» 25-Minute Lecture
* 5-Minute Break
» 25-Minute Lecture

° Reduce the workload of the class
 Final project has been simplified
e Lab 3 -6 are directly related to the project
» Project teams must have at least 4 members
* No final exam. Only Two mid-terms.

° Reduce the pressure of taking exams
» Both mid-terms will be open book
* You will have 3 hrs to take the 2-hr test (5-8 PM, Sibley Auditorium)
* Our goal: test your knowledge

cs 152 Intro.17 ©DAP & SIK 1995

Simulate Industrial Environment

° Project teams must have at least 4 members

° Communicate with colleagues (team members)
* What have you done?
» What answers you need from others?
* You must document your work!!!
» Everyone must keep an on-line notebook

° Communicate with supervisor (TAS)
* How is the team’s plan?
» Short progress reports are required:
- What is the team’s game plan?
- What is each member’s responsibility?

cs 152 Intro.18 ©DAP & SIK 1995

Course Structure

° Design Intensive Class --- 75 to 150 hours per student

MIPS Instruction Set ---> Standard-Cell implementation

° Modern CAD System (VIEWI/ogic):

Schematic capture and Simulation
—

Design Description Computer-based "breadboard"

* Behavior over time
» Before construction

° Lectures:

cs 152 Intro.19

1 week on Overview

2 weeks on ISA Design

5 weeks on Proc. Design

4 weeks on Memory and I/O
3 weeks on special topics

Homework Assignments and Project

° Each assignment consists of two parts
* Individual Effort: Exercises from the text book
» Team Effort (After Lab 3): Lab assignments

©DAP & SIK 1995

° All assignments are assigned on Friday and due on a later Monday

° Here is the list of lab assignments:

* Lab 1 Measure real machines’ performance (1 week)

e Lab 2 MIPS R3000 ISA and SPIM (2 weeks)

e Lab 3 ALU Design (2 weeks)

» Lab 4 Single Cycle Processor Design (2 weeks)
» Lab 5 Pipelined Processor Design (4 weeks - 1 week Spr. Break)
» Lab 6 Cache Design (2 weeks)

° Final project: Integrate Lab 5 and Lab 6 together

° Safety Net: Cache modules will be provided

cs 152 Intro.20

©DAP & SIK 1995

Course Problems

° No late homeworks or labs (except for lab 5)

° What is cheating?
» Studying together in groups is encouraged
* Work must be your own

« Common examples of cheating: running out of time on a
assignment and then pick up output, take homework from box and
copy, person asks to borrow solution “just to take a look”, copying
an exam question, ...

cs 152 Intro.21 ©DAP & SIK 1995

Decide on penalties for cheating

° Exercises (book):
» O for problem
» 0 for homework assignment
» subtract full value for assignment
» subtract 2X full value for assignment

° Labs leading to project (groups: only penalize individuals?)
» O for problem
» 0 for homework assignment
 subtract full value for assignment
 subtract 2X full value for assignment

° Exams
» O for problem
» 0 for exam

cs 152 Intro.22 ©DAP & SIK 1995

The SPARCstation 20

Memory SIMMs

Memory
Controller [

MBus

Memory Bus

A

A

|SPARCstation 20 I /
- |

Disk

| ! |
SBus Slot 1 SBus Slot 3 Tape
-M Bus -S|ot 0
|SBus Slot 0 | |SBus Slot 2 |
SBus SCsl
SEC MACIO Bus
Keyboard Floppy External Bus

< & Mouse Disk »

cs 152 Intro.23

Levels of Organization

|SPARCstation 20 I /

cs 152 Intro.24

©DAP & SIK 1995

Computer

SPARC
Processor

Control I

Datapath

Memory

Devices

Input

Output

HE

©DAP & SIK 1995

The Underlying Network

SPARCstation 20

Memory Bus
e A

Memory
Controller [

Processor Bus.

Standard |/O Bus:
SCSI Bus

MBus
Sun’s High Speed 1/0O Bus:
SBus
MSBI SEC MACIO
f L ow Speed |/O Bus: v
External Bus
- -

cs 152 Intro.25

©DAP & SIK 1995

Processor and Caches

MBus

cs 152 Intro.26

SPARCstation 20

MBusModule

Super SPARC Processor

Registers Datapath
Internal
Cache Control

External Cache

©DAP & SIK 1995

Me

mory

Memory
Controller

cs 152 Intro.27

Input and Output (I/O) Devices

o
i<}
%2}
=
=
2]

SIMM Slot 1
SIMM Slot 2

SIMM Slot 3
SIMM Slot 4

SPARCstation 20

Memory Bus

o

SIMM Slot 5
SIMM Slot 6
SIMM Slot 7

ARAM SIMM

[DrRAM | [DRAM | [DRAM| |DRAM | |DRAM |

[DRAM | [DRAM | |DRAM| |DRAM | |DRAM |

° SCSI Bus: Standard I/O Devices

° SBus: High Speed I/O Devices

° External Bus: Low Speed I/O Device

-

cs 152 Intro.28

A

©DAP & SIK 1995

SPARCstation 20

)

A I;isk

|SBus Slot 1 | |SBus Slot 3 | Tape
|SBus Slot 0 | |SBus Slot 2 |
SBus SCsl
Keyboard Floppy External Bus
& Mouse Disk >

©DAP & SIK 1995

Standard I/O Devices

SPARCstation 20

° SCSI = Small Computer Systems Interface f
° A standard interface (IBM, Apple, HP, Sun ... etc.) i
|
° Computers and I/O devices communicate with each other I
° The hard disk is one I/0O device resides on the SCSI Bus Tape
scsi
] s

cs 152 Intro.29 ©DAP & SIK 1995

High Speed I/0O Devices

SPARCstation 20

° SBus is SUN’s own high speed I/O bus

o

SS20 has four SBus slots where we can plug in I/O devices

o

Example: graphics accelerator, video adaptor, ... etc.

o

High speed and low speed are relative terms

A A

|SBus Slot 1 | |SBus Slot 3 |

|SBus Slot 0 | |SBus Slot 2 |

< SBus >

cs 152 Intro.30 ©DAP & SIK 1995

Slow Speed I/O Devices

SPARCstation 20

The are only four SBus slots in SS20--"seats” are expensive

The speed of some I/O devices is limited by human reaction

time--very very slow by computer standard

Examples: Keyboard and mouse

No reason to use up one of the expensive SBus slot

Keyboard Floppy External Bus
& Mouse Disk
cs 152 Intro.31
Summary

° All computers consist of five components
» Processor: (1) datapath and (2) control

* (3) Memory

o

©DAP & SIK 1995

* (4) Input devices and (5) Output devices

° Not all “memory” are created equally

» Cache: fast (expensive) memory are placed closer to the processor
* Main memory: less expensive memory--we can have more

° Input and output (I/0) devices has the messiest organization
» Wide range of speed: graphics vs. keyboard
* Wide range of requirements: speed, standard, cost ... etc.
» Least amount of research (so far)

cs 152 Intro.32

©DAP & SIK 1995

CS152
Computer Architecture and Engineering
Lecture 2: Cost and Performance

January 20, 1995
Dave Patterson (patterson@cs) & Shing Kong (kong@cs)

Slides available on http://http.cs.berkeley.edu/~patterson

cs 152 Lec2.1 ©DAP & SIK 1995

Overview of Today’s Lecture: Cost and Performance

° Review from Last Lecture (2 minutes)

° Cost of Integrated Circuits (20 minutes)

° Administrative Matters (3 minutes)

° Definition and Measures of Performance (25 minutes)
° Break (5 minutes)

° Summarizing Performance and Performance Pitfalls (25 minutes)

cs 152 Lec2.2 ©DAP & SIK 1995

Review: What is "Computer Architecture”

° Co-ordination of levels of abstraction

Application

Operating
Compiler] System

| Instr. Set Proc. |1/O system |

| Digital Design

Circuit Design

°Under a set of rapidly changing Forces

cs 152 Lec2.3

Review: Levels of Representation

High Level Language
Program

Compiler

Assembly Language
Program

Assembler

Machine Language
Program

Control Signal
Specification

cs 152 Lec2.4

temp = v[K];
v[K] = v[k+1];
v[k+1] = temp;

lw $15, 0($2)
lw $16, 4($2)
sw$16, 0($2)
sw$15, 4($2)

0000 1001 1100 0110 1010
1010 1111 0101 1000 0000
1100 0110 1010 1111 O101
0101 1000 0000 1001 1100

Machine Interpretation

Instruction Set
Architecture

©DAP & SIK 1995

1111 0101 1000
1001 1100 0110
1000 0000 1001
0110 1010 1111

©DAP & SIK 1995

Review: Levels of Organization

|SPARCstation 20 I J/

Computer
SPARC Memory Devices
Processor
Control I Input I
Datapathl Output l
cs 152 Lec2.5 ©DAP & SIK 1995

Review: Summary from Last Lecture

° All computers consist of five components
» Processor: (1) datapath and (2) control
* (3) Memory
* (4) Input devices and (5) Output devices

° Not all “memory” are created equally
» Cache: fast (expensive) memory are placed closer to the processor
* Main memory: less expensive memory--we can have more

° Input and output (I/0) devices has the messiest organization
» Wide range of speed: graphics vs. keyboard
* Wide range of requirements: speed, standard, cost ... etc.
» Least amount of research (so far)

cs 152 Lec2.6 ©DAP & SIK 1995

Integrated Circuits Costs

Die cost = Wafer cost
Dies per Wafer * Die yield

Dies per wafer = gr* (Wafer diam/ 2)2 — ji* Wafer _diam — Test dies = Wafer Area
Die Area v 2 *Die Area Die Area

Die Yield = Wafer yield * 1+

Defects_per_unit_area * Die_Area) a
4

a

Die Cost is goes roughly with the cube of the area.

cs 152 Lec2.7 ©DAP & SIK 1995

Real World Examples

Chip Metal Line Wafer Defect Area Dies/ Yield Die Cost
layers width cost /cm? mm? wafer

386DX 2 0.90 $900 1.0 43 360 71% $4

486DX2 3 0.80 $1200 1.0 81 181 54% $12

PowerPC 601 4 0.80 $1700 1.3 121 115 28% $53

HP PA 7100 3 0.80 $1300 1.0 196 66 27% $73

DEC Alpha 3 0.70 $1500 12 234 53 19% $149
SuperSPARC 3 0.70 $1700 16 256 48 13% $272

Pentium 3 0.80 $1500 15 296 40 9% $417

From "Estimating IC Manufacturing Costs,” by Linley Gwennap, Microprocessor
Report, August 2, 1993, p. 15

cs 152 Lec2.8 ©DAP & SIK 1995

Other Costs

IC cost = Diecost + Testing cost + Packaging cost

Final test yield

Packaging Cost: depends on pins, heat dissipation , ...

Chip

386DX
486DX2
PowerPC 601
HP PA 7100
DEC Alpha
SuperSPARC
Pentium

cs 152 Lec2.9

Die

cost

$4
$12
$53
$73
$149
$272
$417

pins

132
168
304
504
431
293
273

CMOS improvements

° Die size 2X / 3 years; Line widths halve / 7 years

25 4

20 -

Ratio to Area in 1980

15 1

10 +

D/u/
0 + }

Package

type
QFP
PGA
QFP
PGA
PGA
PGA
PGA

e
L —

cost Assembly

$1
$11

$3
$35
$30
$20
$19

;>

Test & Total

$4
$12
$21
$16
$23
$34
$37

-

i/ﬁ\Die Size

1980

cs 152 Lec2.10

1983

1986

1989

1992

$9
$35
$77
$124
$202
$326
$473

©DAP & SIK 1995

©DAP & SIK 1995

Technology Trends

Capacity Speed
Logic 2x in 3years 2x in 3years
DRAM 4x in 3years 1.4x in 10 years
disk 4x in 3years 1.4x in 10 years
cs 152 Lec2.11 ©DAP & SIK 1995

Processor Performance

120 + IBM Power 2/590 ,%

P »

e 100 T 'l

r "

f 801 =

(o] "’

r 60 + ",

m 1.54X/yr _=HP 9000/750 _

a 40 + —‘,— ’—__,

" - IBM____——V’\—

c 204 p_———iylp.s- M200BS6000/540 1.35X/yr

e L Sur-afregMIPS-MA2
0 t } ; : : :
1987 1988 1989 1990 1991 1992 1993

Year

cs 152 Lec2.12 ©DAP & SIK 1995

The bottom line: Performance (and cost)

6.5 hours 610 mph 470 286,700

3 hours 1350 mph 132 178,200

° Time to do the task (Execution Time)
— execution time, response time, latency

° Tasks per day, hour, week, sec, ns. .. (Performance)
— throughput, bandwidth

cs 152 Lec2.13 ©DAP & SIK 1995

The bottom line: Performance (and cost)

" Xis ntimes faster than Y" means
ExTime(Y) Performance(X)

ExTime(X) Performance(Y)
» Time of Concorde vs. Boeing 7477

e Throughput of Boeing 747 vs. Concodre?

cs 152 Lec2.14 ©DAP & SIK 1995

Administrative Matters

° CS152 news group: uch.class.cs152
° Slides available via Mosaic: http://http.cs.berkeley.edu/~patterson

° Initial Assignment: Read Chapters 1 and 2 of “Computer Organization
and Design”, Exercises 1.1to 1.26, 1.50to 1.52,2.5t0 2.7, 2.14-2.17, 2.33
+ run Linpack program on two machines and measure performance

° Class decided on penalties for cheating
» Exercises (book): 0 for homework assignment
 Labs leading to project (groups: penalize individuals in groups)
- Ofor assignment
» Exams: O for exam

° Book is hardcover version

° Other topics?

cs 152 Lec2.15 ©DAP & SIK 1995

Metrics of performance

Answers per month
—— Operations per second

Application

Programming
Language

(millions) of Instructions per second — MIPS
CsE] — (millions) of (F.P.) operations per second — MFLOP/s

Megabytes per second

Function Units
— Cycles per second (clock rate)

Transistors Wires Pins

cs 152 Lec2.16 ©DAP & SIK 1995

o

o

o

o

Relating Processor Metrics

CPU execution time = CPU clock cycles/pgm X clock cycle time

or CPU execution time = CPU clock cycles/pgm + clock rate

CPU clock cycles/pgm = Instructions/pgm X avg. clock cycles per instr.

or CPIl = CPU clock cycles/pgm =+ Instructions/pgm

CPI tells us something about the Instruction Set Architecture, the
Implementation of that architecture, and the program measured

cs 152 Lec2.17

Aspects of CPU Performance

©DAP & SIK 1995

CPUtime = Seconds = Instructions x Cycles X Seconds
Program Program Instruction Cycle
instr. count CPI clock rate
Program
Compiler

Instr. Set Arch.

Organization

Technology

cs 152 Lec2.18

©DAP & SIK 1995

Aspects of CPU Performance

CPUtime = Seconds = Instructions x Cycles X Seconds
Tgram Program Instruction Cycle
instr count CPI clock rate
Program X
Compiler X (x)
Instr. Set. X X
Organization X X
Technology X
o5 152 Lec2.19 ©DAP & SIK 1995

Organizational Trade-offs

Application

Programming
Language

[OSA] Instruction Mix
atapath
Control CPI
Function Units
Transistors Wires Pins —— Cycle Time

cs 152 Lec2.20 ©DAP & SIK 1995

CPI

“Average cycles per instruction”

CPI = Instruction Count / (CPU Time * Clock Rate)
= Instruction Count / Cycles
n
CPU time = CycleTime * z CPI I.* | j
i=1
"instruction frequency"
n
CPI = Z CPIj * Fi where F; = I

i=1 -
Instruction Count

Invest Resources where time is Spent!

cs 152 Lec2.21 ©DAP & SIK 1995

Example

Base Machine (Reg / ReQ)

Op Freq Cycles CPI(i) % Time

ALU 50% 1 5 33%

Load 20% 2 4 27%

Store 10% 2 2 13%

Branch 20% 2 4 27%
TypicaK/lix 15

cs 152 Lec2.22 ©DAP & SIK 1995

Marketing Metrics

MIPS = Instruction Count/ Time * 10"6
= Clock Rate / CPI * 10"6

emachines with different instruction sets ?
eprograms with different instruction mixes ?
« dynamic frequency of instructions

e uncorrelated with performance

MFLOP/S = FP Operations / Time * 10"6
emachine dependent

«often not where time is spent

cs 152 Lec2.23 ©DAP & SIK 1995

Why Do Benchmarks?

° How we evaluate differences
« Different systems
» Changes to a single system

° Provide atarget

» Benchmarks should represent large class of important
programs

* Improving benchmark performance should help many
programs

° For better or worse, benchmarks shape a field

° Good ones accelerate progress
» good target for development

° Bad benchmarks hurt progress
* help real programs v. sell machines/papers?
* Inventions that help real programs don’t help benchmark

cs 152 Lec2.24 ©DAP & SIK 1995

Programs to Evaluate Processor Performance

° (Toy) Benchmarks
» 10-100 line
* e.g.,: sieve, puzzle, quicksort

° Synthetic Benchmarks
 attempt to match average frequencies of real workloads
* e.g., Whetstone, dhrystone

° Kernels
» Time critical excerpts of real programs
* e.g., Livermore loops

° Real programs
* e.g., gcc, spice

cs 152 Lec2.25 ©DAP & SIK 1995

Successful Benchmark: SPEC

° 1987 RISC industry mired in “bench marketing”:
(“That is 8 MIPS machine, but they claim 10 MIPS!")

° EE Times + 5 companies band together to perform Systems
Performance Evaluation Committee (SPEC) in 1988:
Sun, MIPS, HP, Apollo, DEC

° Create standard list of programs, inputs, reporting: some real
programs, includes OS calls, some I/O

cs 152 Lec2.26 ©DAP & SIK 1995

SPEC first round

° First round 1989; 10 programs, single number to summarize
performance

° One program: 99% of time in single line of code

° New front-end compiler could improve dramatically

SPEC Perf

epresso
spice
doduc +
nasa7
eqntott -+
foppp

tomcatv L

matrix300 +

Benchmark

cs 152 Lec2.27 ©DAP & SIK 1995

SPEC Evolution

° Second round; SpeciInt92 (6 integer programs) and SpecFP92 (14
floating point programs)

Compiler Flags unlimited. March 93 of DEC 4000 Model 610:

spice: uni x. c: / def =(sysv, has_bcopy, "bcopy(a, b, c) =
nmencpy(b, a, c)”

wave5b: /al i =(al | , dcomenat)/ ag=a/ ur =4/ ur =200
nasa7: / nor ecu/ ag=a/ ur =4/ ur 2=200/ | c=bl as

° Add SPECbase: one flag setting for integer programs & 1 for FP

° Third round; 1995; new set of programs
» “benchmarks useful for 3 years”

cs 152 Lec2.28 ©DAP & SIK 1995

How to Summarize Performance

° Arithmetic mean (or weighted arithmetic mean) tracks execution time:
SUM(Ti)/n or SUM(Wi*Ti)

° Harmonic mean (or weighted harmonic mean) of rates (e.g., MFLOPS)
tracks execution time:
n/SUM(1/Ri) or n/SUM(Wi/Ri)

° Normalized execution time is handy for scaling performance
(e.g., time on reference machine + time on measured machine)

° But do not take the arithmetic mean of normalized execution time, use
the geometric mean (prod(Ri)*1/n)

° Alas, geometric mean rewards all improvements equally:
program A going from 2 seconds to 1 second as important as
program B going from 2000 seconds to 1000 seconds

cs 152 Lec2.29 ©DAP & SIK 1995

Impact of Means on SPECmark89 for IBM 550

Ratio to VAX: Time: Weighted Time:
Program Before After Before After Before After
gcc 30 29 49 51 8.91 9.22
espresso 35 34 65 67 7.64 7.86
spice 47 47 510 510 5.69 5.69
doduc 46 49 41 38 581 545
nasa’ 78 144 258 140 343 186
li 34 34 183 183 7.86 7.86
eqntott 40 40 28 28 6.68 6.68
fpppp 20 87 34 35 297 3.07
tomcatv 133 138 20 19 201 194

Geometric Arithmetic Weighted Arith.

cs 152 Lec2.30 ©DAP & SIK 1995

Amdahl's Law

Speedup due to enhancement E:
ExTime w/o E Performance w/ E
Speedup(E) = ------m-mommmeeee- = e
ExTime w/ E Performance w/o E

[B - B]

Suppose that enhancement E accelerates a fraction F of the task

by a factor S and the remainder of the task is unaffected then,
ExTime(with E) = ((1-F) + F/S) X ExTime(without E)
Speedup(with E) = ExTime(without E) +

((1-F) + F/S) X ExTime(without E)

cs 152 Lec2.31 ©DAP & SIK 1995

Cost Summary

° Integrated circuits driving computer industry

° Die costs goes up with the cube of die area

cs 152 Lec2.32 ©DAP & SIK 1995

Performance Evaluation Summary

CPUtime = Seconds = Instructions x Cycles X Seconds
Program Program Instruction Cycle

Time is the measure of computer performance!

o

Good products created when have:
» Good benchmarks
» Good ways to summarize performance

If not good benchmarks and summary, then choice between improving
product for real programs vs. improving product to get more sales=>
sales almost always wins

o

Remember Amdahl’'s Law: Speedup is limited by unimproved part of
program

cs 152 Lec2.33 ©DAP & SIK 1995

Instruction Set Design

software N

hardware

cs 152 Lec 31SA.1 © Kong/Patterson 1995

Instruction Set Architecture

Programmer's View Computer
Program
ADD 01010 (Instructions)
SUBTRACT 01110 ~
AND 10011 CPU T—
OR 10001 <> Memory
COMPARE 11010

<~[5]

Computer's View

. l) .

--- Data and Instructions mixed in same --- Data & Instructions in
memory ("stored program computer") separate memories

--- Program as data (dubious advantage) --- Has advantages in certain

--- Storage utilization high performance imple-

--- Single memory interface mentations

cs 152 Lec 31SA.2 © Kong/Patterson 1995

Basic Issues in Instruction Set Design

--- What operations (and how many) should be provided

LD/ST/INC/BRN sufficient to encode any computation
But not useful because programs too long!

--- How (and how many) operands are specified

Most operations are dyadic (eg, A<-B +C)
Some are monadic (eg, A <-~B)

--- How to encode these into consistent instruction formats

Instructions should be multiples of basic data/address widths

Typical instruction set:
° 32 bit word
° basic operand addresses are 32 bits long
° basic operands, like integers, are 32 bits long
° in general case, instruction could reference 3 operands (A :=B + C)

challenge: encode operations in a small number of bits!

cs 152 Lec 31SA.3 © Kong/Patterson 1995

Execution Cycle

[V

Instruction Obtain instruction from program storage
Fetch
Instruction Determine required actions and instruction size
Decode
Operand Locate and obtain operand data
Fetch

Compute result value or status

Result Deposit results in storage for later use
Store
Next Determine successor instruction

Instruction
|

cs 152 Lec 31SA.4

© Kong/Patterson 1995

What Must be Specified?

[V

Fetch

Instruction

L]

° Instruction Format or Encoding

—how is it decoded?
° Location of operands and result

Instruction
Decode

L]

—where other than memory?

Fetch

Operand —how many explicit operands?

—how are memory operands located?

—which can or cannot be in memory?
° Data type and Size
° Operations

v

Store

Result —what are supported

° Successor instruction

L]

—jumps, conditions, branches

Next

Instruction - fetch-decode-execute is implicit!

I—

cs 152 Lec 31ISA.5

Topics to be covered

° Location of operands and result
—where other than memory?
—how many explicit operands?
—how are memory operands located?
—which can or cannot be in memory?

° Operations

° Instruction Format or Encoding
—how is it decoded?

° Data type and Size
—what are supported

cs 152 Lec 31SA.6

© Kong/Patterson 1995

© Kong/Patterson 1995

Basic ISA Classes

Accumulator:

1 address add A acc — acc + mem[A]

1+x address addx A acc « acc + mem[A +x]
Stack:

0 address add tos « tos + next

General Purpose Register:

2 address add AB EA(A) « EA(A) + EA(B)
3 address add ABC EA(A) —« EA(B) + EA(C)
Load/Store:
3 address add RaRbRc Ra ~ Rb+Rc
load Ra Rb Ra - mem[Rb]

store Ra Rb mem[Rb] - Ra

Comparison:
Bytes per instruction? Number of Instructions? Cycles per instruction?

cs 152 Lec 31SA.7 © Kong/Patterson 1995

Comparing Number of Instructions

° Code sequence for C = A + B for four classes of instruction sets:

Stack Accumulator Register Register
(register-memory) (load-store)
Push A Load A Load R1,A Load R1,A
Push B Add B Add R1,B Load R2,B
Add Store C Store C, R1 Add R3,R1,R2

Pop C Store C,R3

cs 152 Lec 31SA.8 © Kong/Patterson 1995

General Purpose Reqisters Dominate

° Since 1975 all machines use machines use general purpose registers

° Advantages of registers
* registers are faster than memory
* registers are easier for a compiler to use

e.g., (A*B) — (C*D) — (E*F) can do multiplies in any order
vs. stack

* registers can hold variables

cs 152 Lec 31SA.9

Examples of Reqgister Usage

memory traffic is reduced, so program is sped up
(since registers are faster than memory)

code density improves (since register named with fewer bits
than memory location)

© Kong/Patterson 1995

Number of memory addresses per typical ALU instruction

Maximum number of operands per typical ALU instruction

0 3
1 2
2 2
3 3

cs 152 Lec 31SA.10

Examples

SPARC, MIPS, Precision Architecture, Power PC
Intel 80x86, Motorola 68000

VAX (also has 3-operand formats)

VAX (also has 2-operand formats)

© Kong/Patterson 1995

Pros and Cons of Number Memory Operands/Operands

° Register—register: 0 memory operands/instr, 3 (register) operands/instr

+ Simple, fixed-length instruction encoding. Simple code generation
model. Instructions take similar numbers of clocks to execute

— Higher instruction count than architectures with memory
references in instructions. Some instructions are short and bit
encoding may be wasteful.

° Register—-memory (1,2)

+ Data can be accessed without loading first. Instruction format
tends to be easy to encode and yields good density.

— Operands are not equivalent since a source operand in a binary
operation is destroyed. Encoding a register number and a memory
addressin each instruction may restrict the number of registers.
Clocks per instruction varies by operand location.

° Memory—-memory (3,3)
+ Most compact. Doesn’t waste registers for temporaries.

— Large variation in instruction size, especially for three-operand
instructions. Also, large variation in work per instruction. Memory
accesses create memory bottleneck.

cs 152 Lec 31SA.11 © Kong/Patterson 1995

Summary on Instruction Classes

° Expect new instructin set architecture to use general purpose register

° Pipelining => Expect it to use load store variant of GPR ISA

cs 152 Lec 31SA.12 © Kong/Patterson 1995

Administrative Matters

° CS152 news group: uch.class.cs152
° Slides available via Mosaic: http://http.cs.berkeley.edu/~patterson

° Video tapes of lectures available for viewing in 205 McLaughlin, Mon-Fri
8AM to 5PM

° 1st Assignment due Monday; Second Assignment handed out Friday:
Questions, Problems?

° Other topics?

cs 152 Lec 31SA.13 © Kong/Patterson 1995

Memoryv Addressin

° Since 1980 almost every machine uses addresses to level of 8-bits
(byte)
° 2 questions for design of ISA:

* Since could read a 32-bit word as four loads of bytes from
sequential byte addresses or as one load word from a single byte
address, how do byte addresses map onto words?

» Can aword be placed on any byte boundary?

cs 152 Lec 31SA.14 © Kong/Patterson 1995

Addressing Objects

Big Endian: address of most significant byte = word address
(xx00 = Big End of word)

— IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

Little Endian: address of least significant byte =word address
(xx00 = Little End of word)

— Intel 80x86, DEC Vax

msb Ish
3 2 1 0 little endian word O:
0 1 2 3 big endian word O:

Alignment: require that objects fall on address that is multiple of
their size.

cs 152 Lec 31SA.15 © Kong/Patterson 1995

Byte Swap Problem

D| 3 Al 3
C| 2 T B | 2
B 1 increasing Cl1
Al O ggéeress Dl O
Big Endian Little Endian

When words are transferred between Big Endian and Little Endian
machines, you must permute the bytes to successfully copy the
data

Each system is self-consistent, but causes problems when they need
communicate!

cs 152 Lec 31SA.16 © Kong/Patterson 1995

Addressing Modes

Addressing mode Example Meaning

Register Add R4,R3 R4 - R4+R3

Immediate Add R4,#3 R4 — R4+3

Displacement Add R4,100(R1) R4 — R4+Mem[100+R1]
Register indirect Add R4,(R1) R4 — R4+Mem[R1]

Indexed Add R3,(R1+R2) R3 « R3+Mem[R1+R2]

Direct or absolute Add R1,(1001) R1 —~ R1+Mem[1001]

Memory indirect Add R1,@(R3) R1 —~ R1+Mem[Mem[R3]]
Auto-increment Add R1,(R2)+ R1 ~ R1+Mem[R2]; R2 —~ R2+d
Auto-decrement Add R1,-(R2) R2 -~ R2-d; R1 ~ R1+Mem[R2]
Scaled Add R1,100(R2)[R3] R1 — R1+Mem[100+R2+R3*d]

cs 152 Lec 31SA.17 © Kong/Patterson 1995

Addressing Mode Usage

3 programs measured on machine with all address modes (VAX)
--- Displacement: 42% avg, 32% to 55%

--- Immediate: 33% avg, 17% to 43%

--- Register deferred (indirect): 13% avg, 3% to 24%

--- Scaled: 7% avg, 0% to 16%

--- Memory indirect: 3% avg, 1% to 6%

--- Misc: 2% avg, 0% to 3%

cs 152 Lec 31SA.18 © Kong/Patterson 1995

Displacement Address Size

—®——nt. Ayg. ——® " FPAw.

30% -

L
25% A
20% +
15% -
10% -

5% -

0% -

° Average of 5 programs from SPECint92 and Average of 5 programs
from SPECfp92

° X-axis is in powers of 2: 4 => addresses > 23 (8) and < 24 (16)

° 1% of addresses > 16-bits

cs 152 Lec 31SA.19 © Kong/Patterson 1995

Immediate Size

* 50% to 60% fit within 8 bits

* 75% to 80% fit within 16 bits

cs 152 Lec 31SA.20 © Kong/Patterson 1995

Addressing Summary

*Data Addressing modes that are important:
Displacement, Immediate, Register Indirect

*Displacement size should be 12 to 16 bits

silmmediate size should be 8 to 16 bits

cs 152 Lec 31SA.21 © Kong/Patterson 1995

Typical Operations

Data Movement Load (from memory)
Store (to memory)
memory-to-memory move
register-to-register move
input (from 1/O device)
output (to I/O device)
push, pop (to/from stack)

Arithmetic integer (binary + decimal) or FP
Add, Subtract, Multiply, Divide

not, and, or, set, clear

Logical

Shift shift left/right, rotate left/right
Control (Jump/Branch) unconditional, conditional
Subroutine Linkage call, return

Interrupt trap, return

Synchronization test & set (atomic r-m-w)
String search, translate

cs 152 Lec 31SA.22 © Kong/Patterson 1995

Top 10 80x86 Instructions

° Rank instruction Integer Average Percent total executed
1 load 22%
2 conditional branch 20%
3 compare 16%
4 store 12%
5 add 8%
6 and 6%
7 sub 5%
8 move register-register 4%
9 call 1%
10 return 1%
Total 96%

° Simple instructions dominate instruction frequency

cs 152 Lec 31SA.23 © Kong/Patterson 1995

Methods of Testing Condition

° Condition Codes

Processor status bits are set as a side-effect of arithmetic
instructions (possibly on Moves) or explicitly by compare or
test instructions.

ex: addrl, r2,r3
bz label

° Condition Register
Ex: cmprl, r2,r3
bgt r1, label

° Compare and Branch
Ex: bgtrl, r2, label

cs 152 Lec 31SA.24 © Kong/Patterson 1995

Condition Codes

Setting CC as side effect can reduce the # of instructions

X:

SUB 0, #1, 10
BRP X

But also has disadvantages:

X:

SUB 10, #1, r0
CMP 0, #0
BRP X

--- not all instructions set the condition codes
which do and which do not often confusing!
e.g., shift instruction sets the carry bit

--- dependency between the instruction that sets the CC and the one
that tests it: to overlap their execution, may need to separate them
with an instruction that does not change the CC

ifetch | read

Old CC read

| compute 'Llrite |
New CC computed
~a

| ifetch |

| compute | write

cs 152 Lec 31SA.25

Branches

© Kong/Patterson 1995

--- Conditional control transfers

Four basic conditions:
N -- negative
Z -- zero

V -- overflow
C -- carry

Sixteen combinations of the basic four conditions:

Always

Never

Not Equal

Equal

Greater

Less or Equal
Greater or Equal
Less

Greater Unsigned
Less or Equal Unsigned
Carry Clear

Carry Set
Positive
Negative
Overflow Clear
Overflow Set

cs 152 Lec 31SA.26

Unconditional
NOP
~Z

VA
~z+(NOV)]
Z+ %\IQV)

© Kong/Patterson 1995

Conditional Branch Distance

—®——Int. Ayg. ——® — - FP Avg.

B0% Tmm e e
35% ---moo-- R C L R P e R PP PP EREP RS
300b - Tl
25% - B - - - o e e oo
20% - O
15% - A
10% fommm b T N

5% | TNt

=t o o+ =

o “ o~ ™ < [t} © ~ © [} =} - ~ ™ < n
= — — “ — =

0% -
Bits of Branch Dispalcement

 Distance from branch in instructions 2i => < +2i-1 & > 22

* 25% of integer branches are>2 & <4or-2to-4 &

cs 152 Lec 31SA.27 © Kong/Patterson 1995

Conditional Branch Addressing

» PC-relative since most branches are relatively close
to the current PC address

At least 8 bits suggested (£ 128 instructions)

* Compare Equal/Not Equal most important for integer

LT/GE
40%

] Int Avg.

GTILE
M FP Avg.

86%
EQINE
} ! t t t]
0% 20% 40% 60% 80% 100%

Frequency of comparison
types in branches

cs 152 Lec 31SA.28 © Kong/Patterson 1995

Operation Summary

» Support these simple instructions, since they
will dominate the number of instructions executed:

load,

store,

add,

subtract,

move register-register,

and,

shift,

compare equal, compare not equal,
branch (with a PC-relative address at least 8-bits long),
jump,

call,

return;

cs 152 Lec 31SA.29 © Kong/Patterson 1995

Data Types

Bit: 0,1

Bit String: sequence of bits of a particular length
4 bits is a nibble
8 bits is a byte
16 bits is a half-word (VAX: word)
32 bits is aword (VAX: long word)

Character:
ASCII 7 bit code
EBCDIC 8 bit code

digité 0-9 encoded as 0000b thru 1001b
two decimal digits packed per 8 bit byte

Sign & Magnitude: 0X vs. 1X Positive #s same in all
1's Complement: 0X vs. 1(~X) First 2 have two zeros
2's Complement: 0Xvs. (I's comp) +1 Lastoneusually chosen

: __exponent e
Single Precision RE C'V%W m‘?‘”é +/- #Sl- ,
Double Precision xR ere is decimal pt
Extended Precision base How are +/- exponents
mantissa represented?

cs 152 Lec 31SA.30 © Kong/Patterson 1995

Operand Size Usage

0%
Doubleword
69%

|

‘ 74%
Word
o
19% M P Avg.
Halfword
0%
7%
Byte
t t t i
0% 20% 40% 60% 80%

Frequency of reference by size

*Support these data sizes and types:
8-bit, 16-bit, 32-bit integers and
32-bit and 64-bit IEEE 754 floating point numbers

cs 152 Lec 31SA.31 © Kong/Patterson 1995

Instruction Format

* If have many memory operands per instructions and
many addressing modes, need an Address Specifier
per operand

*If have load-store machine with 1 address per instr.
and one or two addressing modes, then just encode
addressing mode in the opcode

cs 152 Lec 31SA.32 © Kong/Patterson 1995

Generic Examples of Instruction Formats

Variable: | | | :l

Fixed: | [

e

cs 152 Lec 31SA.33 © Kong/Patterson 1995

Summary of Instruction Formats

* If code size is most important,
use variable length instructions

oIf performance is over is most important,
use fixed length instructions

cs 152 Lec 31SA.34 © Kong/Patterson 1995

Compilers and Instruction Set Architectures

» Ease of compilation

° orthogonality: no special registers, few special cases,
all operand modes available with any data type or instruction type

° completeness: support for a wide range of operations
and target applications

° regularity: no overloading for the meanings of instruction fields
° streamlined: resource needs easily determined

* Register Assignment is critical too

cs 152 Lec 31SA.35 © Kong/Patterson 1995

Modern Reqgister Assianment

° Keep args and local variables in registers
- unless their "location" is obtained.
° Assign registers by "graph coloring"

* Works well if at least 16 registers

@

cs 152 Lec 31SA.36 © Kong/Patterson 1995

Summary of Compiler Considerations

*Provide at least 16 general purpose registers
plus separate floating-point registers,

*Be sure all addressing modes apply to all
data transfer instructions,

*Aim for a minimalist instruction set.

cs 152 Lec 31SA.37 © Kong/Patterson 1995

Instruction Set Metrics

Design-time metrics:
° Can it be implemented, in how long, at what cost?
° Can it be programmed? Ease of compilation?
Static Metrics:
° How many bytes does the program occupy in memory?
Dynamic Metrics:
° How many instructions are executed?
° How many bytes does the processor fetch to execute the program?
° How many clocks are required per instruction? CPI

° How "lean" a clock is practical?
Best Metric: Time to execute the program! A

Inst. Count Cycle Time
NOTE: this depends on instructions set, processor organization, and
compilation techniques.

cs 152 Lec 31SA.38 © Kong/Patterson 1995

Lecture Summary: ISA

° Use general purpose registers with a load-store architecture;

° Support these addressing modes: displacement (with an address offset
size of 12 to 16 bits), immediate (size 8 to 16 bits), and register deferred;

° Support these simple instructions, since they will dominate the number
of instructions executed: load, store, add, subtract, move register-
register, and, shift, compare equal, compare not equal, branch (with a
PC-relative address at least 8-bits long), jump, call, and return;

° Support these data sizes and types: 8-bit, 16-bit, 32-bit integers and 64-
bit IEEE 754 floating point numbers;

° Use fixed instruction encoding if interested in performance and use
variable instruction encoding if interested in code size;

° Provide at least 16 general purpose registers plus separate floating-
point registers, be sure all addressing modes apply to all data transfer
instructions, and aim for a minimalist instruction set.

cs 152 Lec 31SA.39 © Kong/Patterson 1995

CS152
Computer Architecture and Engineering
Lecture 4: MIPS Instruction Set Architecture

January 27, 1995
Dave Patterson (patterson@cs) & Shing Kong (kong@cs)
Slides available on http://http.cs.berkeley.edu/~patterson

cs 152 Lec4.1l ©DAP & SIK 1995

Overview of Today’s Lecture: MIPS et al

° Review from Last Lecture (3 minutes)
° MIPS ISA (20 minutes)

° Administrative Matters (3 minutes)

° More MIPS (25 minutes)

° Break (5 minutes)

° MIPS (VAX, 80x867?) (25 minutes)

cs 152 Lec4.2 ©DAP & SIK 1995

Review: Instruction Set Design

software Ve

R/

S\

hardware

cs 152 Lec4.3 ©DAP & SIK 1995

Execution Cycle

Instruction Obtain instruction from program storage
Fetch
Instruction Determine required actions and instruction size
Decode
Operand Locate and obtain operand data
Fetch
Compute result value or status
Result Deposit results in storage for later use
Store
Next Determine successor instruction
Instruction
I

cs 152 Lec4.4 ©DAP & SIK 1995

Review: Summary

° Use general purpose registers with a load-store architecture;

o

Provide at least 16 general purpose registers plus separate floating-
point registers,

° Support these addressing modes: displacement (with an address offset
size of 12 to 16 bits), immediate (size 8 to 16 bits), and register deferred;

° Be sure all addressing modes apply to all data transfer instructions,

° Use fixed instruction encoding if interested in performance and use
variable instruction encoding if interested in code size;

° Support these data sizes and types: 8-bit, 16-bit, 32-bit integers and 32-
bit and 64-bit IEEE 754 floating point numbers;

Support these simple instructions, since they will dominate the number
of instructions executed: load, store, add, subtract, move register-
register, and, shift, compare equal, compare not equal, branch (with a
PC-relative address at least 8-bits long), jump, call, and return;

o

° Aim for a minimalist instruction set.

cs 152 Lec4.5 ©DAP & SIK 1995

MIPS R2000 / R3000 Registers

° Programmable storage ?2 .
e 2"32x bytes :
* 31x 32-bit GPRs (RO =0) °
+ 32 x 32-bit FP regs (paired DP) 31
« HI,LO,PC PCC———1

A —

cs 152 Lec4.6 ©DAP & SIK 1995

MIPS Addressing Modes/Instruction Formats

Register (direct) |0p | rsl rt |rd | |

L_register |
Immediate |op | rsl rt | immed |
Base+index .
|0p | rsl rt | immed |
Memory
L_register
PC-relative .
|op | rsl rt | immed |
Memory
[_PC
cs 152 Lec4.7 ©DAP & SIK 1995

MIPS R2000 / R3000 Operation Overview

° Arithmetic logical

° Add, AddU, Sub, SubU, And, Or, Xor, Nor, SLT, SLTU
° Addl, AddIU, SLTI, SLTIU, Andl, Orl, Xorl, LUI

° SLL, SRL, SRA, SLLV, SRLV, SRAV

° Memory Access

° LB, LBU, LH, LHU, LW, LWL,LWR

° SB, SH, SW, SWL, SWR

cs 152 Lec4.8 ©DAP & SIK 1995

Multiply / Divide

° Start multiply, divide
e MULT s, rt

* MULTU s,

* DIVrs,rt
e DIVUTrs, 1t

° Move result from multiply, divide

* MFHIrd
* MFLOrd

—

rt

Registers

° Move to Hl or LO

* MTHI rd
e MTLO rd

cs 152 Lec4.9

S

MIPS arithmetic instructions

Instruction

add

subtract

add immediate
add unsigned
subtract unsigned
add imm. unsign.
multiply

multiply unsigned
divide

divide unsigned

Move from Hi
Move from Lo

cs 152 Lec4.10

Example Meaning

add $1,$2,$3 $1=%$2+$3
sub $1,$2,$3 $1=%$2-%3
addi $1,$2,100 $1=$2+ 100
addu $1,$2,$3 $1=$2+$3
subu $1,$2,$3 $1=$2-%3
addiu $1,$2,100 $1=$2 + 100

v

©DAP & SIK 1995

Comments

3 operands; exception possible
3 operands; exception possible
+ constant; exception possible
3 operands; no exceptions

3 operands; no exceptions

+ constant; no exceptions

mult $2,$3 Hi, Lo=$2x $3 64-bit signed product
multu$2,$3 Hi, Lo=$2x $3 64-bit unsigned product

div $2,$3 Lo=%2=+$3, Lo = quotient, Hi = remainder
Hi = $2 mod $3

divu $2,$3 Lo=3%2+$3, Unsigned quotient & remainder
Hi = $2 mod $3

mfhi $1 $1 = Hi Used to get copy of Hi

mflo $1 $1=Lo Used to get copy of Lo

©DAP & SIK 1995

MIPS logical instructions

Instruction

and

or

xor

nor

and immediate
or immediate
xor immediate
shift left logical
shift right logical
shift right arithm.
shift left logical
shift right logical
shift right arithm.

cs 152 Lec4.11

Example Meaning

Comment

and $1,$2,$3
or $1,$2,$3
xor $1,$2,$3
nor $1,$2,$3
andi $1,$2,10
ori $1,$2,10
xori $1, $2,10
sll $1,$2,10
srl $1,$2,10
sra $1,$2,10

$1=9%2 & $3
$1=%2|%$3
$1=%$20%3
$1 = ~($2 |$3)
$1=%$2&10
$1=%2]10
$1=~%$2 &~10
$1=$2<<10
$1=%$2>>10
$1=%$2>>10
sliv $1,$2,$3 $1 =$2 << $3
sriv $1,$2, $3 $1 = $2 >> $3
srav $1,$2, $3 $1 = $2 >> $3

MIPS data transfer instructions

Instruction

SW 500(R4), R3

SH 502(R2), R3
SB 41(R3), R2

LW R1, 30(R2)
LH R1, 40(R3)
LHU R1, 40(R3)
LB R1, 40(R3)
LBU R1, 40(R3)

LUIR1, 40

cs 152 Lec4.12

Comment
Store word
Store half
Store byte

Load word

Load halfword

Load halfword unsigned
Load byte

Load byte unsigned

3 reg. operands; Logical AND
3 reg. operands; Logical OR
3 reg. operands; Logical XOR
3 reg. operands; Logical NOR
Logical AND reg, constant
Logical OR reg, constant
Logical XOR reg, constant
Shift left by constant

Shift right by constant

Shift right (sign extend)

Shift left by variable

Shift right by variable

Shift right arith. by variable

©DAP & SIK 1995

Load Upper Immediate (16 bits shifted left by 16)

©DAP & SIK 1995

Compare and Branch

° Compare and Branch

« BEQrTs,rt, offset

* BNETs, rt, offset <>
° Compare to zero and Branch
 BLEZrs, offset if R[rs] <=0 then PC-relative branch

« BGTZrs, offset >
e BLT <
 BGEZ >=

e BLTZAL rs, offset
« BGEZAL

>=

° Remaining set of compare and branch take two instructions

° Almost all comparisons are against zero!

cs 152 Lec4.13

MIPS jump, branch, compare instructions

Instruction
branch on equal

branch on not eq.
set on less than
set less than imm.
set less than uns.
setl. t. imm. uns.
jump

jump register

jump and link

cs 152 Lec4.14

Example Meaning

beq $1,$2,100 if ($1 == $2) go to PC+4+100
Equal test; PC relative branch

bne $1,$2,100 if ($1!=$2) go to PC+4+100
Not equal test; PC relative

slt $1,%$2,$3 if ($2 < $3) $1=1; else $1=0
Compatre less than; 2's comp.

slti $1,%$2,100 if ($2 < 100) $1=1; else $1=0
Compare < constant; 2’s comp.

sltu $1,$2,$3 if ($2 < $3) $1=1; else $1=0
Compare less than; natural no.

sltiu $1,$2,100 if ($2 < 100) $1=1; else $1=0
Compare < constant; natural

j 10000 go to 10000
Jump to target address

jr$31 go to $31
For switch, procedure return

jal 10000 $31 = PC + 4; go to 10000
For procedure call

if R[rs] == R[rt] then PC-relative branch

if R[rs] <0then branch and link (into R 31)

©DAP & SIK 1995

©DAP & SIK 1995

Administrative Matters

° First Assignment due Monday at 4PM
» Please put discussion section number or time on homework!

° Second Assignment: Read Chapter 3 and Appendix A of “Computer
Organization and Design”, do Exercises + run MIPS program on SPIM
and debug broken SPIM

» Exercises due following Monday (2/6)
Lab (Problems 0,1,2,3) due 2 Mondays later (2/13)
 Start soon! 2 weeks because its more than one weeks work
Problems 0, 1, 2 & Exercises by yourself
Problem 3 only of lab in pairs
- Pairs randomly assigned in discussion sections
Estimate time spent on prior assignment for feedback
° Other topics?

cs 152 Lec4.15 ©DAP & SIK 1995

Why Are Stacks So Great?

Stacking of Subroutine Calls & Returns and Environments:

Al — > A
CALLB
B:[— _»|A|B
CALLC
c [— »|A|B|C
RET
— »|A|B
RET
| = -

Some machines provide a memory stack as part of the architecture
(e.g., the VAX)

Sometimes stacks are implemented via software convention (e.g.,
MIPS)

cs 152 Lec4.16 ©DAP & SIK 1995

Memory Stacks

Useful for stacked environments/subroutine call & return even if
operand stack not part of architecture

Stacks that Grow Up vs. Stacks that Grow Down:

Next Ainf. Big A O Little
Empty?
> grows grows Memory
> [up down Addresses
Last b
SP | Full? a
0 Little inf. Big
How is empty stack represented?
Little --> Big/Last Full Little --> Big/Next Empty
POP: Read from Mem(SP) POP: Decrement SP
Decrement SP Read from Mem(SP)
PUSH: Increment SP PUSH: Write to Mem(SP)
Write to Mem(SP) Increment SP

cs 152 Lec4.17 ©DAP & SIK 1995

Call-Return Linkage: Stack Frames

High Mem
ARGS
i Reference args and

local variables at

fixed (positive) offset
Callee Save from FP

Registers

(old FP, RA)

Local Variables

> ‘Grows and shrinks during

expression evaluation

Low Mem

° Many variations on stacks possible (up/down, last pushed / next)
° Block structured languages contain link to lexically enclosing frame.

cs 152 Lec4.18 ©DAP & SIK 1995

MIPS: Software conventions

0 zero constant 0

1 at reserved for assembler
2 vO0 expression evaluation and
3 vl function results

4 a0 arguments

5 al

6 a2

7 a3

8 t0 temporary: caller saves
15 t7

16 s0 callee saves

23 s7

24 t8

25 t9

26 ko reserved for OS kernel
27 k1

28 ap Pointer to global area
29 sp Stack pointer

30 fp frame pointer

31 ra Return Address (HW)

cs 152 Lec4.19 ©DAP & SIK 1995

MIPS / GCC Calling Conventions

|

a low
address

fact:
addiu $sp, $sp, -32
sw $ra, 20($sp)
sw $fp, 16($sp)

T || o ||O T ||T

addu $fp, $sp, 32 a
ra
e oFP
sw $a0, 0($fp)
lw $31, 20($sp)
lw $fp, 16($sp)
addiu $sp, $sp, 32 ra
ir $31 old FP

First four args passed in registers.

cs 152 Lec4.20 ©DAP & SIK 1995

Example in C: swap

swap(int v[], int k)
{
int temp;
temp = v[K];
v[k] = v[k+1];
v[k+1] = temp;
}

° Assume temp is register $15; arguments in $al, $a2; $16 is scratch reg:
° Write MIPS code

cs 152 Lec4.21 ©DAP & SIK 1995

swap: MIPS

swap:

addi $sp,$sp, 4
sw $16, 8($sp)
sll $t2, $a2,2
add $t2, $a1,$t2
lw $15, 0($t2)
lw $16, 4($t2)
sw $16, 0($t2)
sw $15, 4($t2)
Iw $16, 8($sp)
addiu $sp,$sp, 4
ir $31

cs 152 Lec4.22 ©DAP & SIK 1995

Branch & Pipelines

Bnch| ifetch | read [compute [write |

\
Delay Slot [ifetch ‘t‘ read | compute | write |
Branch Target [ifetch | read [compute | write

By the end of the read stage of the Branch instruction, the CPU knows
whether or not the branch will take place. However, it will have fetched
the next instruction by then, regardless of whether or not a branch

will be taken.

cs 152 Lec4.23 ©DAP & SIK 1995

Delayed Branches: Redefine behavior

Branch: Inst Fetch Pcd & Op Fetcfl \Execute |

execute successor | Inst Fetch P% & Op Fetcl1 Execute |
even if branch taken!

Then branch target | Inst Fetch | |
or continue Single delay slot
impacts the critical path

add r3, rl1, r2
sub r4, r4, 1
bz r4, LL

«Compiler can fill a single delay slot with a
useful instruction 50% of the time.
« try to move down from above jump

emove up from target, if safe

LL: add rd,

cs 152 Lec4.24 ©DAP & SIK 1995

Standard and Delayed Interpretation
E add rd,rs,rt R[rd] <- R[rs] + R[rd];
PC <-PC + 4;
beq rs, rt, offset if R[rd] == R[rt] then PC <- PC + SX(offset)
else PC <-PC + 4;
sub rd,rs, rt

L1: target

[pc | add rd,rs, rt R[rd] <- R[rs] + R[rd]:
[npc] PC <-nPC; nPC <-nPC + 4;
beq rs, rt, offset if R[rd] == R[rt] then nPC <- nPC + SX(offset)
else nPC <- nPC + 4;

PC <-nPC
sub rd,rs,rt
- . ,
L1 target Delayed Loads
05 192 Lecazs ©DAP & SIK 1995

Delayed Branches (cont.)
Execution History
instrO < PC
BCND X <-pC |<nPC
instrl [*PC [*PC |<—nPC

instr2 [<—nPC

Br,f;gtc h Branch

Taken Taken

X: <-PpPC
t2' t2 tl t0

Branches are the bane of pipelined machines

Delayed branches complicate the compiler slightly, but make pipelining
easier to implement and more effective

Good strategy to move some complexity to compile time

cs 152 Lec4.26 ©DAP & SIK 1995

[

o

Miscellaneous MIPS instructions

break A breakpoint trap occurs, transfers control to
exception handler

syscall A system trap occurs, transfers control to
exception handler

coprocessor instrs. Support for floating point: discussed later
TLB instructions Support for virtual memory: discussed later

restore from exception Restores previous interrupt mask & kernel/user
mode bits into status register

load word left/right Supports misaligned word loads
store word left/right ~ Supports misaligned word stores

cs 152 Lec4.27 ©DAP & SIK 1995

o

o

o

o

o

o

Details of the MIPS instruction set

Register zero always has the value zero (even if you try to write it)

Branch and jump instructions put the return address PC+4 into the link
register

All instructions change all 32 bits of the destination reigster (including lui,
Ib, Ih) and all read all 32 bits of sources (add, sub, and, or, ...)

Immediate arithmetic and logical instructions are extended as follows:
* logical immediates are zero extended to 32 bits
 arithmetic immediates are sign extended to 32 bits

The data loaded by the instructions Ib and |h are extended as follows:
* Ibu, Ihu are zero extended
* Ib, Ih are sign extended

Overflow can occur in these arithmetic and logical instructions:
* add, sub, addi

* it cannot occur in addu, subu, addiu, and, or, xor, nor, shifts, mult,
multu, div, divu

cs 152 Lec4.28 ©DAP & SIK 1995

Other ISAs

° Intel 8086/88 => 80286 => 80386 => 80486 => Pentium => P6
» 8086 few transistors to implement 16-bit microprocessor
* tried to be somewhat compatible with 8-bit microprocessor 8080

» successors added features which where missing from 8086 over
next 15 years

» product several different intel enigneers over 10 to 15 years
* Announced 1978
° VAX simple compilers & small code size =>
« efficient instruction encoding
» powerful addressing modes
» powerful instructions
- few registers
» product of a single talented architect
* Announced 1977

cs 152 Lec4.29 ©DAP & SIK 1995

Machine Examples: Address & Registers

Intel 8086 220x 8 bit bytes acc, index, count, quot
AX, BX, CX, DX stack, string
SP, BP, SI, DI code,stack,data segment
CS, SS, DS
IP, Flags
32 r15-- program counter
VAX 11 2 x 8 bit bytes r14-- stack pointer

16 x 32 bit GPRs r13-- frame pointer
r12-- argument ptr

MC 68000 22% 8 bit bytes
8 x 32 bit GPRs
7 x 32 bit addr reg
1 x 32 bit SP
1 x 32 bit PC

MIPS 232 x 8 bit bytes
32 x 32 bit GPRs
32 x 32 bit FPRs
HI, LO, PC

cs 152 Lec4.30 ©DAP & SIK 1995

VAX Operations

° General Format:
(operation) (datatype) (2, 3)
2 or 3 explicit operands
° For example
add (b,w, I, f,d) (2,3)
Yields
addb2 addw2 addl2 addf2 addd2
addb3 addw3 addl3 addf3 addd3

cs 152 Lec4.31 ©DAP & SIK 1995

VAX format, addressing modes

General Instruction Format

Byte 0 1 n m

\ 1
\ N

operand specifier

register

N
N

|OpCode| AM | | AIM |

HH

autoinc
disp | A | r | byte |
| C | r | half word |
| E | r | word
index | 4 | r | m | r | displacement |

cs 152 Lec4.32 ©DAP & SIK 1995

swap: MIPS vs. VAX

swap:
addiu $sp,$sp, -4
sw $16, 8($sp)
sll $t2, $a2,2
add $t2, $a1,$t2
lw $15, 0($t2)
lw $16, 4($t2)
sw $16, 0($t2)
sw $15, 4($t2)
Iw $16, 8($sp)
addiu $sp,$sp, 4
ir $31

cs 152 Lec4.33

Summary

.word *m<r0,r1,r2,r3>

movl r2, 4(a)

movl rl, 8(a)

movl r3, (r2)[r1]
addI3 r0, #1,8(ap)
movl (r2)[r1],(r2)[r0]
movl (r2)[r0],r3

ret

©DAP & SIK 1995

° Use general purpose registers with a load-store architecture: YES

° Provide at least 16 general purpose registers plus separate floating-
point registers: 31 GPR & 32 FPR

° Support these addressing modes: displacement (with an address offset
size of 12 to 16 bits), immediate (size 8 to 16 bits), and register deferred;
: YES: 16 bits for immediate, displacement (disp=0 => register deferred)

° All addressing modes apply to all data transfer instructions : YES

° Use fixed instruction encoding if interested in performance and use

variable instruction encoding if interested in code size : Fixed

° Support these data sizes and types: 8-bit, 16-bit, 32-bit integers and 32-
bit and 64-bit IEEE 754 floating point numbers: YES

° Support these simple instructions, since they will dominate the number
of instructions executed: load, store, add, subtract, move register-
register, and, shift, compare equal, compare not equal, branch (with a
PC-relative address at least 8-bits long), jump, call, and return: YES, 16b

° Aim for a minimalist instruction set: YES

cs 152 Lec4.34

©DAP & SIK 1995

Summary: Salient features of MIPS R3000

*32-bit fixed format inst (3 formats)

*32 32-bit GPR (RO contains zero) and 32 FP registers (and HI LO)
epartitioned by software convention

«3-address, reg-reg arithmetic instr.

*Single address mode for load/store: base+displacement
—no indirection

—16-bit immediate plus LUI

*Simple branch conditions
e compare against zero or two registers for =
* no condition codes

*Delayed branch
sexecute instruction after the branch (or jump) even if
the banch is taken (Compiler can fill a delayed branch with
useful work about 50% of the time)

cs 152 Lec4.35 ©DAP & SIK 1995

CS152
Computer Architecture and Engineering
Lecture 5: Technology & Delay Modeling

February 1, 1995

Dave Patterson (patterson@cs) and
Shing Kong (shing.kong@eng.sun.com)

Slides available on http://http.cs.berkeley.edu/~patterson

cs 152 delay.1 ©DAP & SIK 1995

Recap of Last Lecture

° Use general purpose registers with a load-store architecture
* Provide at least 16 GP registers and separate FP registers

° Support the following addressing modes:
* Displacement (with an address offset size of 12 to 16 bits)
 Immediate with size 8 to 16 bits
* Register deferred

° All addressing modes apply to all data transfer instructions

° Use fixed instruction encoding if interested in performance
Use variable instruction encoding if interested in code size

° Support these data sizes and types: 8-bit, 16-bit, 32-bit integers
32-bit and 64-bit IEEE floating point numbers

° Support these simple instructions: load, store, add, subtract, move
register-register, and, shift, compare equal, compare not equal, branch,
jump, call, and return

° Aim for a minimalist instruction set
cs 152 delay.2 ©DAP & SIK 1995

Outline of Today’s Lecture

o

Recap of Last Lecture and Introduction of Today’s Lecture (4 min.)

o

Performance and Technology trends (16 minutes)

(o]

Administrative Matters and Questions (5 minutes)

o

Delay Modeling and Gate Characterization (25 minutes)

o

Questions and Break (5 minutes)

o

Clocking Methodologies and Timing Considerations (25 minutes)

cs 152 delay.3 ©DAP & SIK 1995

Performance and Technology Trends

1000
Supercomputers _—~~_ /.
100 - /
Q’ /z nnnnnnnnnnn
(&) —
c — — 4
: —
E //, ——=4 T OMMIIers
o 1 _— _— / Microprocessors
IZ I,
/ /
01 %: [

1965 1970 1975 1980 1985 1990 1995 2000

o

Feature Size: shrinks 10% / yr.
» Switching speed improves 1.2/ yr.

(o]

Density: improves 1.2x / yr.

o

Die Area: 1.2x / yr.

o

Technology Power: 1.2x 1.2x1.2=1.7 x / year

cs 152 delay.4 ©DAP & SIK 1995

Performance and Technology Trends (Continue)

L]

1000
Supercomputers _—~~_ /.
100 — y
Q’ /z nnnnnnnnnnn
[&] —
c — — 7
£ —
E //, ——=4 MIMTCOMPIIers
o 1 / / IMiCI’ODI’OCESSOI’S
IZ I,
— =
01 %: 111

1965 1970 1975 1980 1985 1990 1995 2000

° Compute Power:
* Priorto 1985: less than 1.7 x / year
o After 1985: Microprocessor improves greater than 1.7 x / year

° The lesson of RISC is to keep the ISA as simple as possible:
« Shorter design cycle => fully exploit the advancing technology.
» Advance pipeline techniques
* Bigger and more sophisticated on-chip caches

cs 152 delay.5 ©DAP & SIK 1995

Basic Technology: CMOS

° CMOS: Complementary Metal Oxide Semiconductor
* NMOS (N-Type Metal Oxide Semiconductor) transistors
« PMOS (P-Type Metal Oxide Semiconductor) transistors

° NMOS Transistor Vdd =5V
 Apply a HIGH (Vdd, 5V) to its gate — =
turns the transistor into a “conductor” pjpe—

 Apply a LOW (GND, 0v) to its gate GND =0v
shuts off the conduction path L

Vdd =5V

° PMOS Transistor g_Lg

1 L

 Apply a HIGH (Vdd, 5V) to its gate
shuts off the conduction path

GND =0v
 Apply a LOW (GND, 0v) to its gate 5
turns the transistor into a “conductor” N I

 pp—

cs 152 delay.6 ©DAP & SIK 1995

Basic Components: CMOS Inverter

Symbol Circuit

In >O Out In

° Inverter Operation

VoutA

Vdd
Vdd Vdd |

I g L own
" "

Vdd

| O

— Discharge

|
\

Vdd Vin —

cs 152 delay.7 ©DAP & SIK 1995

Basic Components: CMOS Logic Gates

o

A) Out

]

NAND Gate
A B |Out
0O 0 1
0 1 1
1 0 1
1 1 0
Vdd
Out
B

cs 152 delay.8

;

NOR Gate
A B |Out
A Out 0O 0 1
0 1 0
B 1 0| o
1 1 0
Vdd
o
b B
| Out
| ‘ |
|

©DAP & SIK 1995

Gate Comparison

—7 Vvdd

< I -
T o=
o L

—L— NAND Gate NOR Gate

|J>

° If PMOS transistors is faster:
e It is OK to have PMOS transistors in series
* NOR gate is preferred
« NOR gate is preferred also if H-> L is more critical than L -> H

° If NMOS transistors is faster:
 Itis OK to have NMOS transistors in series
* NAND gate is preferred
« NAND gate is preferred also if L -> H is more critical than H -> L

cs 152 delay.9 ©DAP & SIK 1995

Range of Design Style

Custom Design Standard Call Gate Array
Gates Gates
O Custom
3 ALU .
§) Routing Channel
IS Standard
o ALU Gates
@)
£ :
= _ Routing Channel
5 Custom Standard Registers
© Register File
Gates

cs 152 delay.10 ©DAP & SIK 1995

Questions and Administrative Matters

° CS152 Logic and Storage Components

cs 152 delay.11 ©DAP & SIK 1995

Ideal (CS) versus Reality (EE)

° When input 0 -> 1, output 1 -> 0 but NOT instantly
 Output goes 1 -> 0: output voltage goes from Vdd (5v) to Ov

° When input 1 -> 0, output O -> 1 but NOT instantly
* Output goes 0 -> 1: output voltage goes from Ov to Vdd (5v)

° Voltage does not like to change instantaneously

Voltage A
1=>Vdd [—Yout

In Out

Vin

0=>GND

- |
Time

cs 152 delay.12 ©DAP & SIK 1995

Fluid Timing Model

Level (V) = Vdd

Tank Level (Vout)

—(4 SWi
SW2 Sealevd

(GND) |

Reservoir Tank

(Cout) — m——
Bottomless Sea

° Water <-> Electrical Charge Tank Capacity <-> Capacitance (C)

o

Water Level <-> Voltage Water Flow <-> Charge Flowing (Current)

o

Size of Pipes <-> Strength of Transistors (G)

o

Time to fill up thetank ~C /G

cs 152 delay.13 ©DAP & SIK 1995

Series Connection

___ Vdd ___ Vdd
—Q —Q
Vin V1 V out ']]
Vi. G1 V1 G2 Vout
- G2 B ::Cl B ::Cout
Voltage A — — — —
Vdd !
vil ||V1 Vout
Vdd/2}— e
i
GND >

Time

° Total Propagation Delay = Sum of individual delays =d1 + d2

° Capacitance C1 has two components:
» Capacitance of the wire connecting the two gates
* Input capacitance of the second inverter

cs 152 delay.14

©DAP & SIK 1995

Parallel Connection

Vin

V1

V2

S0

Vin

° Delay (Vin ->V2) ! = Delay (Vin -> V3)

* Delay (Vin ->V2) = Delay (Vin -> V1) + Delay (V1 ->V?2)
* Delay (Vin ->V3) = Delay (Vin -> V1) + Delay (V1 ->V3)

° Critical Path = The longest among the N parallel paths

° Cl=Wire C+ Cin of Gate 2 + Cin of Gate 3

cs 152 delay.15

[Vvdd

] V1

B C1

[Vdd

©DAP & SIK 1995

General Cell Delay Model

A

B Combinational
L ogic Gate

X

Vout

Cout

Dela
A y

Internal

Delay |

Va->Vout

— -
Ccritical Cout

° Tied inputs B ... X such that a change in A will causes Vout to change
 Example: If this is a AND gate, tie Input B, C, ... Xto “1”

° Do not use this gate to drive any Cout > Ccritical

° Keep the model simple by using a linear equation:
* Delay (A -> Out) = Internal Delay + (Load Dependent Delay) x Cout

cs 152 delay.16

©DAP & SIK 1995

Characterize a Gate

° Input capacitance for each input

° For each input-to-output path:
* For each output transition type (H->L, L->H, H->Z, L->Z ... etc.)
- Internal delay (ns)
- Load dependent delay (ns / fF)

° Example: 2-input NAND Gate

A —— Out A Delay A -> Out

B Out: Low -> High

For A and B: Input Load = 61 fF Slope =

_ 0.0021ns/ fF
For either A -> Out or B -> Out: 0.5nS
TPIh=0.5ns Tplhf =0.0021ns/ fF '
TPhl =0.1ns TPhiIf = 0.0020ns/ fF -
Cout

cs 152 delay.17 ©DAP & SIK 1995

A Specific Example: 2to 1 MUX

A :
Wire 1 A N
_ Gatel > Y

WII‘GOﬁ N
B <
Gate?’)OY:(A and 1S) =

B Gate 2 or (AandS)
Wire 2 S

S
° Input Load

e A, B: I.L. (NAND) =61 fF
e S: L. (INV) + L.L. (NAND) = 50 fF + 61 fF = 111 fF

° Load Dependent Delay: Same as Gate 3
« TAYIhf=0.021 ns / fF TAYhIf =0.020 ns / fF
« TBYIhf=0.021 ns / fF TBYhIf =0.020 ns / fF
 TSYIhf =0.021 ns / fF TSYIhf =0.020 ns / fF

cs 152 delay.18 ©DAP & SIK 1995

2 to 1 MUX: Internal Delay Calculation

Wire 1

B Gate 2

A
. Gatel b
Wi reOﬁ

° Internal Delay:

Wire 2

Y=(Aand!S)or (AandS)
Gate 3

s AtoY:I.LD.G1+ (WirelC+G3InputC)* L.D.DG1+I.D. G3
s BtoY:I.D.G2+ (Wire2C+G3InputC)* L.D.D. G2 +1.D. G3
e Sto Y (Worst Case): I.D. Inv + (Wire0C + G1 Input C) *L.D.D. Inv +

Internal Delay Ato Y

° We can approximate the effect of “Wire 1 C” by:
« Assume Wire 1 has the same C as all the gate C attache to it.
» Total C Gate 1 need to drive: 2.0 x Input C of Gate 3

cs 152 delay.19

©DAP & SIK 1995

2 to 1 MUX: Internal Delay Calculation (continue)

A :
Wirel
_ Gatel
WireQ > Y=(Aand!S)or (Aand9)
Gate 3

B Gate 2

Wire 2

° Internal Delay:

s AtoY:I.LD.G1+ (WirelC+G3InputC)* L.D.DG1+I.D. G3
s BtoY:I.D.G2+ (Wire2C+G3InputC)* L.D.D. G2 +1.D. G3
e Sto Y (Worst Case): I.D. Inv + (Wire0C + G1 Input C) *L.D.D. Inv +
Internal Delay Ato Y
° Specific Example:

e TAYIh=TPhl G1+ (2.0*61fF)* TPhl G1 + TPIh G3
= 0.1ns + 122 fF * 0.0020ns/fF + 0.5ns = 0.844ns

cs 152 delay.20 ©DAP & SIK 1995

Abstraction: 2to 1 MUX

A
) A
Gatel Y
Q Y
@7 B

XNINT X ¢

B Gate 2

n

S
° Input Load: A =61fF, B =61fF, S=111fF

° Load Dependent Delay:
« TAYIhf=0.021 ns / fF TAYhIf =0.020 ns / fF
« TBYIhf=0.021 ns / fF TBYhIf =0.020 ns / fF
o TSYIhf =0.021 ns /fF TSYIhf=0.020ns /f F

° Internal Delay:
e TAYIh =TPhl G1+ (2.0*61 fF)* TPhl G1 + TPIh G3
=0.1ns + 122 fF * 0.0020ns/fF + 0.5ns = 0.844ns
 Fun Exercises: TAYhI, TBYIh, TSYIh, TSYIh

cs 152 delay.21 ©DAP & SIK 1995

Storage Element’s Timing Model

ck | Y *

Setup Hold

D Don’t Care [™ ':' . Don't Care

—N: <— Clock-to-Q

—Op
QO

Unknown

° Setup Time: Input must be stable BEFORE the trigger clock edge
° Hold Time: Input must REMAIN stable after the trigger clock edge

° Clock-to-Q time:
« Output cannot change instantaneously at the trigger clock edge
« Similar to delay in logic gates, two components:
- Internal Clock-to-Q
- Load dependent Clock-to-Q

cs 152 delay.22 ©DAP & SIK 1995

Break (5 Minutes)

cs 152 delay.23 ©DAP & SIK 1995

CS152 Logic Elements

° NAND2, NAND3, NAND 4

° NOR2Z, NOR3, NOR4

(o]

INV1x (normal inverter)

° INV4x (inverter with big output drive)

cs 152 delay.24 ©DAP & SIK 1995

CS152 Logic Elements (Continue)

°© XOR2
° XNOR2
° PWR: Source of 1's

° GND: Source of 0’'s

cs 152 delay.25 ©DAP & SIK 1995

CS152 Storage Element

° D flip flop with negative edge triggered

cs 152 delay.26 ©DAP & SIK 1995

Clocking Methodology
Clk Y Y

i > e
: : Combination Logic _ _
BN B RS ol e D
T

° All storage elements are clocked by the same clock edge

—O>

° The combination logic block’s:
* Inputs are updated at each clock tick
o All outputs MUST be stable before the next clock tick

cs 152 delay.27 ©DAP & SIK 1995

Critical Path & Cycle Time
Clk Y Y

3 |
SN B
T T

° Critical path: the slowest path between any two storage devices

° Cycletime is a function of the critical path

° More specifically, the cycle time must be greater than:
* Clock-to-Q + Longest Path through the Combination Logic + Setup

cs 152 delay.28 ©DAP & SIK 1995

Clock Skew’s Effect on Cycle Time
Clk1 Y Y

Clkz y i+ Clock Skew Y
— - - -
Clk1 Clk2

° The worst case scenario for cycle time consideration:
 The input register sees CLK1
 The output register sees CLK2

° Cycle Time = CLK-t0-Q + Longest Delay Path + Setup + Clock Skew

cs 152 delay.29 ©DAP & SIK 1995

Tricks to Reduce Cycle Time

° Reduce the number of gate levels

i
; YL) }}

(9]

O

D

O

° Pay attention to loading
° One gate driving many gates is a bad idea
° Avoid using a small gate to drive along wire

° Use multiple stages to drive large load (NVax

Clarge

1 >

NV 4x p—

cs 152 delay.30 ©DAP & SIK 1995

How to Avoid Hold Time Violation?

Clk Y Y
T Dwz > I

: : Combination Logic :
/(%

° Hold time requirement:
* Input to register must NOT change immediately after the clock tick

—O>

° This is usually easy to meet in the “edge trigger” clocking scheme

° CLK-to-Q + Shortest Delay Path must be greater than Hold Time

cs 152 delay.31 ©DAP & SIK 1995

Clock Skew’s Effect on Hold Time
Clk1 Y Y

Clkz y i+ Clock Skew Y

M e el e
: : Combination Logic _ _
BN BRI s e D I
I

Clk2 Clk1

—O>

° The worst case scenario for hold time consideration:
 The input register sees CLK?2
 The output register sees CLK1

° (CLK-to-Q + Shortest Delay Path - Clock Skew) > Hold Time

cs 152 delay.32 ©DAP & SIK 1995

Summary

° Performance and Technology Trends
 Keep the design simple to take advantage of the latest technology
« CMOS inverter and CMOS logic gates

° Delay Modeling and Gate Characterization
* Delay = Internal Delay + (Load Dependent Delay x Output Load)

° Clocking Methodology and Timing Considerations
o Simplest clocking methodology
- All storage elements use the SAME clock edge
 Cycle Time = CLK-to-Q + Longest Delay Path + Setup + Clock Skew
 CLK-t0-Q + Shortest Delay Path - Clock Skew < Hold Time

cs 152 delay.33 ©DAP & SIK 1995

To Get More Information

° A Classic Book that Started it All:
o Carver Mead and Lynn Conway, “Introduction to VLSI Systems,”

Addison-Wesley Publishing Company, October 1980.

° A Good VLSI Circuit Design Book

 Lance Glasser & Daniel Dobberpuhl, “The Design and Analysis of
VLSI Circuits,” Addison-Wesley Publishing Company, 1985.

- Mr. Dobberpuhl is responsible for the DEC Alpha chip design.

° A Book by Dean Hodges:

 David Hodges & Horace Jackson, “Analysis and Design of Digital
Integrated Circuits,” McGraw-Hill Book Company, 1983.

cs 152 delay.34 ©DAP & SIK 1995

Computer Architecture and Engineering
Lecture 6: The Design Process & ALU Design

February 3, 1995

Dave Patterson (patterson@cs) and
Shing Kong (shing.kong@eng.sun.com)

Slides available on http://http.cs.berkeley.edu/~patterson

cs 152 design.1 ©DAP & SIK 1995

Recap of Last Lecture

° Performance and Technology Trends
» Keep the design simple to take advantage of the latest technology
* CMOS inverter and CMOS logic gates

° Delay Modeling and Gate Characterization
» Delay = Internal Delay + (Load Dependent Delay x Output Load)

° Clocking Methodology and Timing Considerations
» Simplest clocking methodology
- All storage elements use the SAME clock edge
» Cycle Time = CLK-t0-Q + Longest Delay Path + Setup + Clock Skew
» CLK-t0-Q + Shortest Delay Path - Clock Skew < Hold Time

cs 152 design.2 ©DAP & SIK 1995

Outline of Today’s Lecture

° Recap of Last Lecture and Introduction of Today’s Lecture (4 min.)
° An Overview of the Design Process (16 min.)

° Questions and Administrative Matters (5 min.)

° An Review of Binary Arithmetics (5 min.)

° Designing a Simple 4-bit ALU (20 min.)

° Questions and Break (5 min.)

° Other ALU Construction Techniques (5 min.)

° Keeping an On-line Design Notebook (20 min.)

cs 152 design.3 ©DAP & SIK 1995

The Design Process

"To Design Is To Represent"
Design activity yields description/representation of an object

- Traditional craftsman does not distinguish between the concept-
ualization and the artifact

Separation comes about because of complexity

The concept is captured in one or more representation languages

This process IS design

Design Begins With Requirements
-- Functional Capabilities: what it will do

-- Performance Characteristics: Speed, Power, Area, Cost, . ..

cs 152 design.4 ©DAP & SIK 1995

Design Process (cont.)

Design Finishes As Assembly
4
-- Design understood in terms of Datapath Control
components and how they have -
been assembled Egs |Shifter I
-- Top Down decomposition of /
complex functions (behaviors) Nand
into more primitive functions G?elrt]e

-- bottom-up composition of primitive
building blocks into more complex assemblies

Design is a "creative process," not a simple method

cs 152 design.5 ©DAP & SIK 1995

Design Refinement

Informal System Requirement
Initial Specification
Intermediate Specification

refinement
increasing level of detail

Final Architectural Description

v

Intermediate Specification of Implementation

|Final Internal Specification

Physical Implementation

cs 152 design.6 ©DAP & SIK 1995

Design as Search

Strategy 1 Strategy 2
P

|SubProb2 | |SubProb3 |

|BBl| |BBZ| |BBS| BBn

Design involves educated guesses and verification
-- Given the goals, how should these be prioritized?
-- Given alternative design pieces, which should be selected?

-- Given design space of components & assemblies, which part will yield
the best solution?

Feasible (good) choices vs. Optimal choices

cs 152 design.7 ©DAP & SIK 1995

Design as Representation (example)

(1) Functional Specification "VHDL Behavior"

Inputs: 2 x 16 bit operands- A, B; 1 bit carry input- Cin.
Outputs: 1 x 16 bit result- S; 1 bit carry output- Co.

Operations: PASS, ADD (A plus B plus Cin), SUB (A minus B
minus Cin), AND, XOR, OR, COMPARE (equality)

Performance: left unspecified for now!

(2) Block Diagram "VHDL Entity"

Understand the data and control flows
A B

3
ALU M {«g—~—— mode/function

Cinl@———

«+—— Co
S

cs 152 design.8 * ©DAP & SIK 1995

o

o

Elements of the Design Process

Divide and Conquer

* Formulate a solution in terms of simpler components.
» Design each of the components (subproblems)

Generate and Test

» Given a collection of building blocks, look for ways of putting
them together that meets requirement

Successive Refinement

» Solve "most" of the problem (i.e., ignore some constraints or
special cases), examine and correct shortcomings.

Formulate High-Level Alternatives

 Articulate many strategies to "keep in mind" while pursuing any
one approach.

Work on the Things you Know How to Do

» The unknown will become “obvious” as you make progress.

cs 152 design.9 ©DAP & SIK 1995

Summary of the Design Process

Hierarchical Design to manage complexity
Top Down vs. Bottom Up vs. Successive Refinement

Importance of Design Representations:

Block Diagrams

Decomposition into Bit Slices top bottom
down up
Truth Tables, K-Maps
o mux design
Circuit Diagrams meets at TT

Other Descriptions: state diagrams, timing diagrams, reg xfer, . . .

Optimization Criteria:

Gate Count Area Logic Levels
Delay Power
[Package Count] / Fan-in/Fan-out
Pin Out Cost Design time

cs 152 design.10 ©DAP & SIK 1995

Administrative Matters

° A new “tentative” schedule

» Good News: You will have more time to work on the project after
the 2nd mid-term

» Bad News: The 2nd mid-term is moved up one week.

° After the 2nd mid-terms, we will try to arrange some guest lecturers to

talk about some topics that are interesting

cs 152 design.11

Introduction to Binary Numbers

° Consider a 4-bit binary number

Decimal
o 0
1
° 2
3
° Examples:
*3+2=5

Binary

0000
0001
0010
0011

cs 152 design.12

Decimal

~N O 0B

Binary

0100
0101
0110
0111

©DAP & SIK 1995

©DAP & SIK 1995

Two’s Complement Representation

° 2's complement representation of negative numbers
* Bitwise inverse and add 1
» The MSB is always “1” for negative number => sign bit

° Biggest 4-bit Binary Number: 7 Smallest 4-bit Binary Number: -8
Bitwise
Decimal Binary Decimal Inverse 2's Complement
0 0000 0 1111 0000
1 0001 -1 1110 1111
2 0010 -2 1101 1110
3 0011 -3 1100 1101
4 0100 -4 1011 1100
5 0101 -5 1010 1011
6 0110 -6 1001 1010
7 0111 -7 1000 1001
8 1000 -8 0111 1000

“Illegal” Positive Number!

cs 152 design.13 ©DAP & SIK 1995

Two’s Complement Arithmetic

Decimal Binary Decimal 2's Complement

0 0000 0 0000
1 0001 -1 1111
2 0010 =2 1110
3 0011 -3 1101
4 0100 -4 1100
5 0101 5 1011
6 0110 _6_ 1010
7 0111 -7 1001

-8 1000

° Examples: 7 - 6 = 7+(-6) = 1 3-5=3+(5)=-2

1 1 1 1 1
\0\1\1 1 0 O\l\l
+ 1 0 1 0 + 1 0 1 1
0 0 0 1 1 1 1 0

cs 152 design.14 ©DAP & SIK 1995

Functional Specification of the ALU

ALUog|
Y3
ATI_>

—— Zero
E T’—» Result

— Overflow

B —~»
CarryOut

° ALU Control Lines (ALUop) Function
» 000 And
» 001 Or
» 010 Add
* 110 Subtract
« 111 Set-on-less-than

cs 152 design.15

A One Bit ALU

©DAP & SIK 1995

° This 1-bit ALU will perform AND, OR, and ADD

Carryln
A LN
—) o
D | < —p Result
— g
Y
- 1-bit
Full >
B P Adder |~

cs 152 design.16

¢ CarryOut

©DAP & SIK 1995

A One-bit Full Adder ‘Carryln

A —p| 1-bit
Full [—®»C
B —» Adder

° This is also called a (3, 2) adder

° Half Adder: No CarryIn nor CarryOut

° Truth Table: *CarryOut
Inputs Outputs
A B Carryln || CarryOut Sum Comments
0 0 0 0 0 0+0+0=00
0 0 1 0 1 0+0+1=01
0 1 0 0 1 0+1+0=01
0 1 1 1 0 0+1+1=10
1 0 0 0 1 1+0+0=01
1 0 1 1 0 1+0+1=10
1 1 0 1 0 1+1+0=10
1 1 1 1 1 1+1+1=11
cs 152 design.17 ©DAP & SIK 1995
Logic Equation for CarryOut
Inputs Outputs
A B Carryln || CarryOut| Sum Comments
0 0 0 0 0 0+0+0=00
0 0 1 0 1 0+0+1=01
0 1 0 0 1 0+1+0=01
0 1 1 1 0 0+1+1=10
1 0 0 0 1 1+0+0=01
1 0 1 1 0 1+0+1=10
1 | 1 | 0 ” 1 | 0 1+1+0=10
1 | 1 | 1 ” 1 | 1 1+1+1=11

° CarryOut = (A & B & CarryIn) | (A & !B & CarryIn) | (A & B & !CarrylIn)
| (A &B & Carryln)

° CarryOut =B & Carryln | A& Carryln | A&B

cs 152 design.18 ©DAP & SIK 1995

Logic Equation for Sum

Inputs Outputs
A B Carryln || CarryOut| Sum Comments
0 0 0 0 0 0+0+0=00
0 0 1 0 1 0+0+1=01
o o o o La T orieo-m
0 1 1 1 0 0+1+1=10
1 0 0 0 1 1+0+0=01
1 0 1 1 0 1+0+1=10
1 1 0 1 0 1+1+0=10
i i i 1 i 1+1+1=11

°Sum= (A &!B & Carryln) | ({A&B &!Carryln) | (A& !B & !Carryln)
| (A& B & Carryln)

cs 152 design.19 ©DAP & SIK 1995

Logic Equation for Sum (continue)

°Sum= (A& !B & Carryln) | ({(A&B &!Carryln) | (A & !B & !Carryln)
| (A& B & Carryln)

°Sum=A XOR B XOR Carryln

° Truth Table for XOR:

X Y X XOR Y
0 0 0
0 1 1
1 0 1
1 1 0

cs 152 design.20 ©DAP & SIK 1995

Logic Diagrams for CarryOut and Sum

° CarryOut =B & Carryln | A& Carryln | A&B

Carryln

A

° Sum =A XOR B XOR Carryln

1 =

CarryOut

) D2

Carryln
A
)
cs 152 design.21
A 4-bit ALU
° 1-bit ALU
Carryln
A > N

g

:
\J

cs 152 design.22

Result

Y
1 1-bit
Full -
B Adder /
*CarryOut

©DAP & SIK 1995

4-bit ALU
Carrylno+
AQ :
— Lbit L g Reqiito
so—™ ALU
Carrylnl* CarryOut0
Al :
— Lbit L g Resiit1
Bl_> ALU
Carrylnz* CarryOutl
A2 :
—» Lbit | gy Reit2
g—» ALU
Carryln3* CarryOut2
A3 F
— Lbit Ly Reqiit3
pz3—®» ALU

*CarryOutS

©DAP & SIK 1995

How About Subtraction?

° Keep in mind the followings:
* (A-B)isthethat as: A + (-B)
» 2’s Complement: Take the inverse of every bit and add 1

° Bit-wise inverse of B is IB:
*A+IB+1=A+(IB+1)=A+(-B)=A-B

cs 152 design.23

Overflow

Decimal
0

~N o OO b~ WN PP

° Examples: 7 + 3 = 10 but...

Subtract

4 1B

Binary
0000
0001
0010
0011
0100
0101
0110
0111

0 1 1 1
“\\ 0 “\\ 1 “\\ 1 “\\ 1
+ 0 0 1 1
1 0 1 0

cs 152 design.24

<l

£

XN TXZ

Decimal
0

-1
-2
-3

0000
1111
1110
1101
1100
1011
1010
1001
1000

Result

©DAP & SIK 1995

2's Complement

-4 -5=-9 but ..

7 ‘\
3 +
6

0 0 -4
1 1 -5
1017

©DAP & SIK 1995

Overflow Detection

° Overflow: the result is too large (or too small) to represent properly
* Example: - 8 < = 4-bit binary number <=7

o

When adding operands with different signs, overflow cannot occur!

° Overflow occurs when adding:
» 2 positive numbers and the sum is negative
* 2 negative numbers and the sum is positive

o

Homework exercise: Prove you can detect overflow by:
e Carry into MSB ! = Carry out of MSB

!
0 1\1\1 7 1 0 0 -4
+ o ‘o M1 M1 3 + o 1 1 -5
1 0 1 0

-6

ol|lr r

cs 152 design.25 ©DAP & SIK 1995

Overflow Detection Logic

° Carry into MSB ! = Carry out of MSB
» For a N-bit ALU: Overflow = CarryIn[N - 1] XOR CarryOut[N - 1]

Carrylno*
A0 1bit
ALU —» ResultO X Y X XOR Y
B>
Carryl nl* CarryOut0 0 0 0
Al__ gl 1hit 0 = =
—» Resultl 1 0 1
Bl_> ALU
Carryl n2+ CarryOutl 1 1 0

Aol TThit | Reilt2
BZ_> ALU

Carryin3 §
— Lbit | g Reqit3
B3_> ALU

vCarryOutS

cs 152 design.26 ©DAP & SIK 1995

Zero Detection Logic

° Zero Detection Logic is just a one BIG NOT gate
* Any non-zero input to the NOR gate will cause its output to be zero

+Carryl n0
Al Thit | REeU0
s—> ALU .
Carryl nl* CarryOut0
Al 1hit | Resultl
Bl—™1 ALU |
Carryl n2+ CarryOutl
A2l 1pit Result2 |
g—» ALU
Carryl n3+ CarryOut2
AS_—pul"1pit | Resultd
s—> ALU o

cs 152 design.27

The Disadvantage of Ripple Carry

*CarryOutS

Zero

©DAP & SIK 1995

° The adder we just built is called a “Ripple Carry Adder”
» The carry bit may have to propagate from LSB to MSB
» Worst case delay for a N-bit adder: 2N-gate delay

—» ResultO

—p Resultl

— Result2

— Result3

Carryl no*
A0 1bit
s—>| ALU

Carryl nl* CarryOut0
Al 1hit
s—»| ALU

Carryl n2+ CarryOutl
A2 gl 1hit
g— ALU

Carryl n3+ CarryOut2
A3l Tohit

cs 152 design.28

*CarryOutS

Carryln

- —

CarryOut

©DAP & SIK 1995

Break

° 5-minute Break

cs 152 design.29

Carry Select Header

° Consider building a 8-bit ALU
* Simple: connects two 4-bit ALUs in series

cs 152 design.30

Result[3:0]

Result[7:4]

CarryOut

©DAP & SIK 1995

©DAP & SIK 1995

Carry Select Header (Continue)

° Consider building a 8-bit ALU
» Expensive but faster: uses three 4-bit ALUs

4 lco
0

A[3:0] Carryln

Result[3:0]

niv

Result[7:4]

2to 1 MUX 1 ooffa—

*CarryOut

cs 152 design.31 ©DAP & SIK 1995

The Theory Behind Carry Lookahead

Bl Al BO AO

Y ovy

1-bit | Cin0
ALU [

Cin2 [1.pjt
ALU

ATUD

TIN0D T
0mnoD

° Recalled: CarryOut = (B & Carryln) | (A & Carryln) | (A & B)
e Cin2 = Coutl = (B1&Cinl) | (A1&Cinl) | (A1&B1)
* Cinl= Cout0 = (BO & Cin0) | (A0 & Cin0) | (A0 & BO)

° Substituting Cinl into Cin2:

. Cin2=(A1& A0 & BO) | (A1 & A0 & Cin0) | &1 & B0 & Cin0) |
(B1& A0 & BO) | (B1& A0 & Cin0) | (B1 & A& Cin0) | (Al & B1)

° Now define two new terms:
* Generate Carry at Bit i gi = Ai & Bi
» Propagate Carry via Bit i

cs 152 design.32 ©DAP & SIK 1995

The Theory Behind Carry Lookahead (Continue)

° Using the two new terms we just defined:
* Generate Carry at Bit i gi = Ai & Bi
* Propagate Carry viaBiti pi = Ai or Bi

° We can rewrite:
* Cinl = g0 | (pO & Cin0)
*Cin2 =91 | (pP1&g0) | (p1& p0 & Cin0)
*Cin3 =92 | (p2&gl) | (pP2&p1&g0) | (p2 & pl & p0 & Cin0)

° Carry going into bit 3is 1if
» We generate a carry at bit 2 (g2)

» Or we generate a carry at bit 1 (g1) and
bit 2 allows it to propagate (p2 & g1)

» Or we generate a carry at bit 0 (g0) and
bit 1 as well as bit 2 allows it to propagate (p2 & p1 & g0)

* Or we have a carry input at bit 0 (Cin0) and
bit 0, 1, and 2 all allow it to propagate (p2 & p1 & p0 & Cin0)

cs 152 design.33 ©DAP & SIK 1995

A Partial Carry Lookahead Adder

° It is very expensive to build a “full” carry lookahead adder
» Just imagine the length of the equation for Cin31

° Common practices:
» Connects several N-bit Lookahead Adders to form a big adder

» Example: connects four 8-bit carry lookahead adders to form
a 32-bit partial carry lookahead adder

A[31:24] B[31:24] A[23:16] B[23:16] A[15:8] B[15:8] A[7:0] B[7:0]

8-bit Carry [cpg| 8-bit Carry | 16| 8-bit Carry | cg| 8-bit Carry |

L ookahead |- L ookahead Lookahead |- Lookahead [<—
Adder Adder Adder Adder

8 8 8 8

Result[31:24] Result[23:16] Result[15:8] Result[7:0]

cs 152 design.34 ©DAP & SIK 1995

Why should you keep an design notebook?

° Keep track of the design decisions and the reasons behind them
» Otherwise, it will be hard to debug and/or refine the design

° Insights you have on certain aspect of the design

° Results of the different design & debug experiments

cs 152 design.35 ©DAP & SIK 1995

Why do we keep it on-line?

° You need to force yourself to take notes
* Open an widow and leave an editor running while you work

° Take advantage of the window system’s “cut and paste” features

° Itis much easier to read your typing than your writing

cs 152 design.36 ©DAP & SIK 1995

How should you do it?

° Keep it simple
° Separate the entries by dates

° Index: write a one-line summary of what you did each day

cs 152 design.37 ©DAP & SIK 1995

On-line Notebook Example

° Refer to the handout

cs 152 design.38 ©DAP & SIK 1995

Summary

° An Overview of the Design Process
» Design is an iterative process-- successive refinement
» Do NOT wait until you know everything before you start

° An Introduction to Binary Arithmetics
 If you use 2's complement representation, subtract is easy.

° ALU Design
 Designing a Simple 4-bit ALU
» Other ALU Construction Techniques

° On-line Design Notebook
* Open awindow and keep an editor running while you work
» Refer to the handout as an example

cs 152 design.39 ©DAP & SIK 1995

To Get More Information

° Chapter 4 of your text book:
» David Patterson & John Hennessy, “Computer Organization &
Design,” Morgan Kaufmann Publishers, 1994.
° A book I really like:

» David Winkel & Franklin Prosser, “The Art of Digital Design: An
Introduction to Top-Down Design,” Prentice-Hall, Inc., 1980.

° My master thesis has a chapter on carry lookahead adder design:

» Shing Kong, “Some Design Techniques for High Performance MOS
Circuits,” Master Report, EECS Department, UC Berkeley, 1985.

cs 152 design.40 ©DAP & SIK 1995

Computer Architecture and Engineering
Lecture 7: ALU Design

February 8, 1995

Dave Patterson (patterson@cs) and
Shing Kong (shing.kong@eng.sun.com)

Slides available on http://http.cs.berkeley.edu/~patterson

cs 15217 ALU.1 ©DAP & SIK 1995

Review: A One Bit ALU

° This 1-bit ALU will perform AND, OR, and ADD

Carryln
A = N\
—) o
D | < —p Result
— g
Y
- 1-bit
Full >
B P Adder |~

¢ CarryOut

cs 15217 ALU.2 ©DAP & SIK 1995

Review: Functional Specification of the ALU

ALUog|
Y3
AT»
- Zer0

'33 ———>—® Result
(o N

— Overflow

B T»
CarryOut

° ALU Control Lines (ALUop) Function
» 000 And
» 001 Or
» 010 Add
* 110 Subtract
« 111 Set-on-less-than
cs 15217 ALU.3 ©DAP & SIK 1995

Recap of Last Lecture

° An Overview of the Design Process
» Design is an iterative process-- successive refinement
» Do NOT wait until you know everything before you start

° An Introduction to Binary Arithmetics
 If you use 2's complement representation, subtract is easy.

° ALU Design

» Designing a Simple 4-bit ALU

» Other ALU Construction Techniques
° On-line Design Notebook

* Open awindow and keep an editor running while you work
» Refer to the handout as an example

cs 15217 ALU.4 ©DAP & SIK 1995

Outline of Today’s Lecture

° Recap of Last Lecture and Introduction of Today’s Lecture (2 min.)
° Deriving the ALU from the Instruction Set & Shift (25 min.)

° Questions and Administrative Matters (3 min.)

° Multiply (20 min.)

° Questions and Break (5 min.)

° More Multiply (25 min.)

cs 15217 ALU.S ©DAP & SIK 1995

Deriving requirements of ALU

° Start with instruction set architecture: must be able to do all operations
in ISA

° Tradeoffs of cost and speed based on frequency of occurrence,
hardware budget

° MIPS ISA

cs 15217 ALU.6 ©DAP & SIK 1995

MIPS arithmetic instructions

Meaning

$1=9%2-$3

I nstruction Example

add add $1,$2,$3 $1=$2+$3
subtract sub $1,$2,$3

add immediate addi $1,$2,100 $1=%$2+ 100
add unsigned addu $1,$2,$3 $1=%2+$3

subtract unsigned subu $1,$2,$3 $1=$2—-$3
add imm. unsign. addiu $1,$2,100 $1 = $2 + 100

multiply mult $2,$3
multiply unsigned multu$2,$3
divide div $2,$3

divideunsigned divu $2,$3

Hi,Lo=$2x$3
Hi,Lo=$2x$3
Lo=$2~+ $3,
Hi = $2 mod $3
Lo=$2~+ $3,

Hi = $2 mod $3
$1=Hi

cs 15217 ALU.7

remainder
Move from Hi mfhi $1
Movefrom Lo mflo $1

$1=Lo

MIPS logical instructions

Instruction Example
and and $1,$2,%$3
or or $1,$2,$3
xor xor $1,$2,$3
nor nor $1,$2,$3
and immediate andi $1,$2,10
or immediate ori $1,$2,10
xor immediate xori $1, $2,10
shift left logical sl $1,$2,10
shift right logical srl $1,$2,10
shift right arithm. sra $1,$2,10
shift left logical sllv $1,$2,$3
shift right logical srlv $1,$2, $3

shift right arithm.

cs 15217 ALU.8

srav $1,$2, $3

Meaning
$1=9%$2 & $3
$1=%$2|%3
$1=%$20%3
$1 = ~($2 |$3)
$1=%2&10
$1=%2|10
$1 =~%$2 &~10
$1=$2<<10
$1=%$2>>10
$1=%$2>>10
$1=$2<<$3
$1=$2>>$3
$1=9%$2>>%3

Comments

3 operands; exception possible
3 operands; exception possible
+ constant; exception possible
3 operands; no exceptions

3 operands; no exceptions

+ constant; no exceptions
64-bit signed product

64-bit unsigned product

Lo = quoatient, Hi = remainder

Unsigned quatient &

Used to get copy of Hi
Used to get copy of Lo

©DAP & SIK 1995

Comment

3 reg. operands; Logical AND
3 reg. operands; Logical OR
3 reg. operands; Logical XOR
3 reg. operands; Logical NOR
Logical AND reg, constant
Logical OR reg, constant
Logical XOR reg, constant
Shift left by constant

Shift right by constant

Shift right (sign extend)

Shift left by variable

Shift right by variable

Shift right arith. by variable

©DAP & SIK 1995

Compare and Branch

° Compare and Branch

 BEQrs,rt, offset if R[rs] == R[rt] then PC-relative branch

* BNETs, rt, offset <>

° Compare to zero and Branch
 BLEZrs, offset if R[rs] <=0 then PC-relative branch

« BGTZrs, offset >
e BLT <
 BGEZ >=

e BLTZAL rs, offset if R[rs] <0then branch and link (into R 31)

+ BGEZAL >=

cs 15217 ALU.9

MIPS ALU requirements

° Add, AddU, Sub, SubU, Addl, AddIU
=>2's complement adder with overflow detection & inverter

SLTI, SLTIU (set less than)
=>2's complement adder with inverter, check sign bit of result

o

BEQ, BNE (branch on equal or not equal)
=>2's complement adder with inverter, check if result =0

° And, Or, Andl, Orl
=> Logical AND, logical OR

ALU from last lecture supports these ops

cs 15217 ALU.10

©DAP & SIK 1995

©DAP & SIK 1995

Additional MIPS ALU requirements

° Xor, Nor, Xorl
=> Logical XOR, logical NOR or use 2 steps: (A OR B) XOR 1111....1111

° Sll, Srl, Sra
=> Need left shift, right shift, right shift arithmetic by 0 to 31 bits

° Mult, MultU, Div, DivU
=> Need 32-bit multiply and divide, signed and unsigned

cs 15217 ALU.11 ©DAP & SIK 1995

Add XOR to ALU

° Expand Multiplexor Carryln

A ——_DD N

Y

> N\ -
™ / Z |——» Result
esul
= N[s
) T
\
| 1-bit
Full >
B B Adder |~

¢ CarryOut

cs 15217 ALU.12 ©DAP & SIK 1995

Shifters

Three different kinds:

logical-- value shifted in is always "0"

arithmetic-- on right shifts, sign extend

[T

rotating-- shifted out bits are wrapped around (not in MIPS)

left
msb Isb

Isb *0"

right
msb Isb

Note: these are single bit shifts. A given instruction might request
0 to 32 bits to be shifted!

cs 15217 ALU.13

Multiplexor/Shifter

D3

D2
D1

Yy Y VY

DO

Q
@
PORORORO

n
T-»
2

(o

on't
shift
(5inputs)

©DAP & SIK 1995

SHR 0, 1, 2, 3 bits:

Q310 Q30 ~»0
> D3
0 ‘_:1 > D3 0 1 01
o >3 e I e g I Y
%2_»8 Q3L 01
QL0 fptt 0 |pp1
83:% >D2 Q¥ 1
Qo0 || o
o *|3 Q1_>1 i1 D0
5 x1 X 2
Q0
QL1 |y po 8x 2:1 Mux
Q2 I% 2 stages
Q3

1

shift amount

How do arithmetic shift right?

cs 15217 ALU.14

(0,1,2,3)

4 x 4:1 Mux

1 stage

(7 inputs)

©DAP & SIK 1995

General Scheme

RA35555500
so 1L e L]
Slr%%*% | LA

S~ T —1 11
B S§

A NN

s2 | ' | | - [

Right-to-left connections support Rotate (not in MIPS but found in others)

cs 15217 ALU.15 ©DAP & SIK 1995

32 Bit Shifter

Using this scheme for 32 bit data with 0-31 bit shifts would result in
5 stages of mux's (x1, x2, x4, x8, x16) if 2:1 are used

32 bits x 5 stages = 160 2:1 mux's!

3 stages of mux's (x4, x4, x2) if 2 levels of 4:1 and 1 level of 2:1 used

32x4:1+32x4:1+32x2:1

2 stages of mux's (x8, x4) if 1 level of 8:1 and 1 level of 4:1 used

32x8:1 + 32x4:1

cs 15217 ALU.16 ©DAP & SIK 1995

Multibit Shifts (continued)

Mixed strategy, multiple control loops with more than one bit per loop
31 bit shift:
31 iterations with a 0,1 position shifter
11 iterations with a 0,1,2,3 position shifter
5 iterations with a 0,1,2,3,4,5,6,7 position shifter
3iterations with an 0-15 position shifter

Fortunately, most shifts are relatively short (0-3 often implemented)

Extra Complexity: can only do shift right so far

cs 15217 ALU.17 ©DAP & SIK 1995

Funnel Shifter

Instead Extract 32 bits of 64.

I Y |l X

Shift Right

I R |

° Logical: Y=0

32 32
° Arithmetic? *

° Rotate? Shift Right

° Left shifts? {sz

cs 15217 ALU.18 ©DAP & SIK 1995

Barrel Shifter

Technology-dependent solutions:

SR3 SR2 SR1 SRO
D3
A 4 4 4 D2
e V ﬁ/ ﬂ/ ﬂ
e 4 4 5 D1
BREE
% 4 4 DO
N
Q3 Q2 Q1 Q0

Administrative Matters

° Video tapes of lectures available for viewing in 205 McLaughlin,
Mon. to Fri. 9 AM to 5 PM; Wed & Fri. 6 PM to 10 PM

° 1st Midterm 2 weeks, Feb. 22; 5 PM to 8 PM for 1.5 hour test in Sibley
Auditorium;
2 hand drawn pieces of paper
(will be able to bring to second midterm too)

° LaVal's Afterwards to meet students, TAs, profs

° Other topics?

cs 15217 ALU.20 ©DAP & SIK 1995

MULTIPLY

° Paper and pencil example:

Mul ti plicand 1000
Mul tiplier X 1001
— 1000
0000
0000
1000
Pr oduct 1001000

° m bits x n bits = m+n bit product

° Binary makes it easy:
» 0 =>place 0 (0 x multiplicand)
* 1 =>place 0 (1 x multiplicand)

° 3 versions of multiply hardware & algorithm: successive refinement

cs 15217 ALU.21 ©DAP & SIK 1995

MULTIPLY HARDWARE Version 1

° 64-bit Multiplicand reg, 64-bit ALU, 64-bit Product reg,
32-bit multiplier reg

Multiplicand gpjft | eft
64 bits

Multiplier
Shift Right

32 bits

Product Writel Control
64 bits

cs 15217 ALU.22 ©DAP & SIK 1995

64-bit ALU

Multiply Algorithm Version 1
Multiplier Multiplicand Product
0011 0000 0010 0000 0000

Multiplier0=1 1.Test Multiplier0=0
Multiplier0

1a Add multiplicand to product and place the
result in Product register.

| 2. Shift the Multiplicand register left 1 bit. |

| 3. Shift the Multiplier register right 1 bit. |

No: < 32 repetitions
32nd repetition? epet

Yes: 32 repetitions

©DAP & SIK 1995

Observations on Multiply Version 1

° 1 clock per cycle => =100 clocks per multiply
» Ratio of multiply to add 5:1 to 100:1

° 1/2 bits in multiplicand always 0
=> 64-bit adder is wasted

o

0's inserted in left of multiplicand as shifted
=> |east significant bits of product never changed once formed

[

Instead of shifting multiplicand to left, shift product to right?

cs 15217 ALU.24 ©DAP & SIK 1995

MULTIPLY HARDWARE Version 2

° 32-bit Multiplicand reg, 32 -bit ALU, 64-bit Product reg,
32-bit Multiplier reg

Multiplicand
32 hits
Multiplier
32-hit ALU Shift Right
32 hits
Shift Right
Product Wrgi]te Control
64 bits
cs 15217 ALU.25 ©DAP & SIK 1995

Multiply Algorithm Version 2

Multiplier Multiplicand Product
0011 0010 0000 0000

Multiplier0=1 lier0 =
P 1. Test Multiplierd Multiplier0=0

la Add multiplicand to the |€ft half of the
product and place the result in theleft half
of the Product register.

| 2. Shift the Product register right 1 bit. |

| 3. Shift the Multiplier register right 1 bit. |

. No: < 32 repetitions
32nd repetition?

Yes: 32 repetitions

cs 15217 ALU.26 ©DAP & SIK 1995

Observations on Multiply Version 2

° Product register wastes space that exactly matches size of multiplier
=> combine Multiplier register and Product register

cs 15217 ALU.27 ©DAP & SIK 1995

MULTIPLY HARDWARE Version 3

° 32-bit Multiplicand reg, 32 -bit ALU, 64-bit Product reg,
(O-bit Multiplier reg)

Multiplicand

32 bits
— |
32-hit ALU

Shift Right
Product Wﬁ te Control
I 64 bits

cs 15217 ALU.28 ©DAP & SIK 1995

Multiply Algorithm Version 3

Multiplicand Product
0010 0000 0011

Product0=1 Product0=0
P l Teﬂ Produmo I

la Add multiplicand to the |ft half of the
product and place the result in the | eft half
of the Product register.

| 2. Shift the Product register right 1 bit.

32nd repetition?

| Yes: 32 repetitions

cs 15217 ALU.29 ©DAP & SIK 1995

No: < 32 repetitions
L

Observations on Multiply Version 3

° 2 steps per bit because Multiplier & Product combined
° MIPS registers Hi and Lo are left and right half of Product
° Gives us MIPS instruction MultU

° What about signed multiplication?

 easiest solution is to make both positive & remember whether to
complement product when done (leave out the sign bit, run for 31
steps)

» Booth’s Algorithm is more elegant way to multiply signed numbers
using same hardware as before

cs 15217 ALU.30 ©DAP & SIK 1995

Motivation for Booth’s Algorithm
° Example 2 x 6 = 0010 x 0110:

0010
X 0110
+ 0000 shift (0 in multiplier)
+ 0010 add (1 in nultiplier)
+ 0100 add (1 in nultiplier)
+ 0000 shift (0 in multiplier)
00001100
° ALU with add or subtract gets same result in more than one way:
6 =—-2+8 , or
0110 = — 0010+ 1000

° Replace a string of 1s in multiplier with an initial subtract when we first
see a one and then later add for the bit after the last one. For example

0010
0110
0000 shift (O in rmultiplier)
0010 sub (first 1 in multiplier)
0000 shift (mddle of string of 1s)
0010 add (prior step had last 1)
00001100

+ + 1 +[x

cs 15217 ALU.31 ©DAP & SIK 1995

Booth’s Algorithm Insight

middle of run
end of run beginning of run
o(1]1 1{D o

Current Bit Bit to the Right Explanation Example
1 0 Beginning of arun of 1s 0001111000
1 1 Middle of arun of 1s 0001111000
0 1 End of arun of 1s 0001111000
0 0 Middle of a run of Os 0001111000

Originally for Speed since shift faster than add for his machine

cs 15217 ALU.32 ©DAP & SIK 1995

Booth’s Algorithm

1. Depending on the current and previous bits, do one of the following:
00: a. Middle of a string of 0s, so no arithmetic operations.
01: b. End of a string of 1s, so add the multiplicand to the left
half of the product.
10: c. Beginning of a string of 1s, so subtract the multiplicand
from the left half of the product.
11: d. Middle of a string of 1s, so no arithmetic operation.

2.As in the previous algorithm, shift the Product register right (arith) 1 bit.

Multiplicand Product (2 x 3) Multiplicand Product (2 x -3)
0010 0000 0011 O 0010 0000 1101 O
cs 15217 ALU.33 ©DAP & SIK 1995
Summary

° Instruction Set drives the ALU design

° Shifter: success refinement from 1/bit at a time shift register to barrel
shifter

° Multiply: successive refinement to see final design
» 32-bit Adder, 64-bit shift register, 32-bit Multiplicand Register
* Booth’s algorithm to handle signed multiplies

° There are algorithms that calculate many bits of multiply per cycle
(see exercises 4.36 to 4.39 in COD)

° What's Missing from MIPS is Divide & Floating Point Arithmetic: Next
time the Pentium Bug

cs 15217 ALU.34 ©DAP & SIK 1995

CS152
Computer Architecture and Engineering
Lecture 9: Designing a Single Cycle Datapath

February 15, 1995

Dave Patterson (patterson@cs) and
Shing Kong (shing.kong@eng.sun.com)

Slides available on http://http.cs.berkeley.edu/~patterson

cs 152 datapath.1 ©DAP & SIK 1995

Recap of the On-line Design Note Book

° Top 10 things to put in your on-line design notebook
» 10. Start: type “date” and copy & paste into your notebook.
. What is the goal/objective of today?
. Description of any problem: what did you see? what did you do?
Keep track of the time whenever you do a new “compile.”
. Procedures for testing and running experiments.
. Outputs of tests and experiments.
. Insights and thoughts you have while you work.
. Copy & pate headers of important emails.
. Last thing of the day: One line summary => Notebook Index.
Finish: type “date” and copy & paste into your notebook.

L]
PN WA OO N ®©

cs 152 datapath.2 ©DAP & SIK 1995

Outline of Today’s Lecture

° Recap and Introduction (5 minutes)

° Where are we with respect to the BIG picture? (15 minutes)
° Questions and Administrative Matters (5 minutes)

° The Steps of Designing a Processor (10 minutes)

° Datapath and timing for Reg-Reg Operations (15 minutes)

° Break (5 minutes)

o

Datapath for Logical Operations with Immediate (5 minutes)

o

Datapath for Load and Store Operations (10 minutes)

o

Datapath for Branch and Jump Operations (10 minutes)

cs 152 datapath.3 ©DAP & SIK 1995

The Big Picture: Where are We Now?

° The Five Classic Components of a Computer

Processor
Input
Control
Memory
Datapath Output

° Today's Topic: Datapath Design

cs 152 datapath.4 ©DAP & SIK 1995

The Big Picture: The Performance Perspective

° Performance of a machine was determined by:
* Instruction count
* Clock cycle time
» Clock cycles per instruction

° Processor design (datapath and control) will determine:
» Clock cycle time
» Clock cycles per instruction

° In the next two lectures:
 Single cycle processor:
- Advantage: One clock cycle per instruction
- Disadvantage: long cycle time

cs 152 datapath.5 ©DAP & SIK 1995

The MIPS Instruction Formats

° All MIPS instructions are 32 bits long. The three instruction formats:

31 26 21 16 11 6 0
. R-type [op [rs [rt [rd | shamt | funct |
6 bits 5 bits 5 bits 5 hits 5 bits 6 bits
31 26 21 16 0
* Itype [op [rs [rt [immediate |
6 bits 5 bits 5 bits 16 bits
. J_type 31 26 0
[op [target address |
6 bits 26 bits

° The different fields are:
» op: operation of the instruction
* rs, rt, rd: the source and destination register specifiers
» shamt: shift amount
« funct: selects the variant of the operation in the “op” field
» address /immediate: address offset or immediate value
* target address: target address of the jump instruction

cs 152 datapath.6 ©DAP & SIK 1995

o

o

o

o

o

Clk

The MIPS Subset

31 26 21 16 11 6

ADD and subtract op rs rt rd shamt funct

*addrd,rs, rt 6bits _ 5bits _ 5bits _ 5bits _ 5bhits 6 bits

e subrd,rs,rt

31 26 21 16

OR Immediate: [op rs rt immediate

e ori rt,rs,imml6 6 bits 5 bits 5 bits 16 bits
LOAD and STORE

e lwrt, rs, imml6

e swrt, rs,imml6
BRANCH:

* beqrs, rt,imml16
JUMP: 31 26

. j target [op target address

6 hits 26 hits
cs 152 datapath.7 ©DAP & SIK 1995
An Abstract View of the Implementation
v Instruction Address
Ideal Instruction
Instruction
Memory Rd| Rs| Rt Imm
5[, 5|, 5 16],
.
) » Data
Rw Ra Rb 7 "\ Address
32 I deal
. 2abit | 2)~ »| 0% |Daaou
Registers c Dataln | \
Clk Y PR
7 Clk
%2 Y

cs 152 datapath.8

©DAP & SIK 1995

Clocking Methodology

oy

Setup Hold

| A

Setup Hold

Y

~

Y

Y

Y

° All storage elements are clocked by the same clock edge

ﬁ}—;

° Cycle Time = CLK-to-Q + Longest Delay Path + Setup + Clock Skew

° (CLK-to-Q + Shortest Delay Path - Clock Skew) > Hold Time

cs 152 datapath.9

An Abstract View of the Critical Path

° Register file and ideal memory:
» The CLK input is a factor ONLY during write operation

» During read operation, behave as combinational logic:
- Address valid => Output valid after “access time.”

©DAP & SIK 1995

Clk Critical Path (Load Operation) =
PC’'s Clk-to-Q +
Instruction Address Inst_ruction Memory’sA_ccessTime+
Register File's Access Time +
ALU to Perform a 32-bit Add +
| sltdeilt Instruction Data Memory Access Time +
nstruction i i i i
Memory rRdl rsl Rt Imm thuE g(mefor Register File Write +
5[, 51, 5 16, ocK Kkew
/
)] Data
Rw Ra Rb 7 32 Address | deal
R3bit | # —| 9 |paeou
Registers \ Dataln | Memory

Clk

cs 152 datapath.10

©DAP & SIK 1995

Questions and Administrative Matters (5 Minutes)

° Discussion Section Room Change for Thursday:
» Before 109 Morgan => New 373 Soda
 Effective: 2/16/1995, Thursday

° One more time:
» All teams must be at least four people
* We want you to learn to work in a big team

cs 152 datapath.11 ©DAP & SIK 1995

The Steps of Designing a Processor

° Instruction Set Architecture => Register Transfer Language

° Register Transfer Language =>
» Datapath components
» Datapath interconnect

° Datapath components => Control signals

° Control signals => Control logic

cs 152 datapath.12 ©DAP & SIK 1995

RTL: The ADD Instruction

°add rd,rs,rt

* mem[PC] Fetch the instruction from memory

* R[rd] <- R[rs] + R[rt] The ADD operation

*« PC<-PC+4 Calculate the next instruction’s address
cs 152 datapath.13 ©DAP & SIK 1995

RTL: The Load Instruction

° lw rt, rs, imm16

* mem[PC] Fetch the instruction from memory

e Addr <- R[rs] + SignExt(imm16)
Calculate the memory address

* R[rt] <- Mem[Addr] Load the data into the register

* PC<-PC+4 Calculate the next instruction’s address

cs 152 datapath.14 ©DAP & SIK 1995

Combinational Logic Elements

. Carryln
Adder A
Sum
B Carr
32 y
° MUX
A —F>]
32 =z
C Y
B x| 32
32
° ALU
OP
A
32
Result
32
B Zero
32
cs 152 datapath.15 ©DAP & SIK 1995

Storage Element: Register

° Register)
S . Write Enable
» Similar to the D Flip Flop except J_
- N-bitinput and output Dataln Data Out
- Write Enable input —N/—> —N/—>
» Write Enable:

- 0: Data Out will not change %
- 1: Data Out will become Data In Clk

cs 152 datapath.16 ©DAP & SIK 1995

Storage Element: Register File

° Register File consists of 32 registers:

RW RA RB

Write Enable 51, 5 5
|

» Two 32-bit output busses: busA
busA and busB busw 32 30-bit 32
* One 32-bit input bus: busW 32 Registers busB
Clk [OUSS
° Register is selected by: C-? 32

* RA selects the register to put on busA
* RB selects the register to put on busB

* RW selects the register to be written
via busW when Write Enable is 1

° Clock input (CLK)
* The CLK input is a factor ONLY during write operation
» During read operation, behaves as a combinational logic block:
RA or RB valid => busA or busB valid after “access time.”

cs 152 datapath.17

Storage Element: Idealized Memory

©DAP & SIK 1995

Write Enable | Address
° Memory (idealized) |
* One input bus: Data In
* One output bus: Data Out Daaln DataOut
P ' 32 32
° Memory word is selected by: %C>

» Address selects the word to put on Data Out

» Write Enable = 1: address selects the memory
memory word to be written via the Data In bus

° Clock input (CLK)
* The CLK input is a factor ONLY during write operation
» During read operation, behaves as a combinational logic block:
Address valid => Data Out valid after “access time.”

cs 152 datapath.18

©DAP & SIK 1995

Overview of the Instruction Fetch Unit

° The common RTL operations
* Fetch the Instruction: mem[PC]
» Update the program counter:
- Sequential Code: PC<-PC +4

- Branch and Jump PC <-*“something else”

\J

S

_ | Next Address

|

Logic
\
Address .
Instruction Word
Instruction // -
Memory 32
cs 152 datapath.19 ©DAP & SIK 1995
RTL: The ADD Instruction
31 26 21 16 11 6 0
| op | rs | rt | rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
°add rd,rs,rt
* mem[PC] Fetch the instruction from memory
* R[rd] <- R[rs] + R[rt] The actual operation
* PC<-PC+4 Calculate the next instruction’s address

cs 152 datapath.20

©DAP & SIK 1995

RTL: The Subtract Instruction

31 26 21 16 11 6 0
[oo | rs | 1t [rd | shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

°sub rd,rs,rt

* mem[PC] Fetch the instruction from memory
e R[rd] <- R[rs] - R[rt] The actual operation
* PC<-PC+4 Calculate the next instruction’s address

cs 152 datapath.21 ©DAP & SIK 1995

Datapath for Register-Register Operations

° R[rd] <- R[rs] op R[rt] Example: add rd,rs, rt
* Ra, Rb, and Rw comes from instruction’s rs, rt, and rd fields
» ALUctr and RegWr: control logic after decoding the instruction

31 26 21 16 11 6 0
[oo | rs | 1t [rd | shamt | funct
6 bits 5 hits 5 hits 5 hits 5 bits 6 bits
Rs Rt ALUct
RegWr 5 5 5 cr
I
Rw Ra Rb
buswW , 1 3232-bit SReslt
32/ Registers 327 >
Clk
—>

cs 152 datapath.22 ©DAP & SIK 1995

Register-Register Timing

Clk | I |
—»! <4—Clk-t0-Q !
pc Oldvaue | X NewVaue 1 X
Rs Rt Rd | iq——! Instruction Memory Access Time !
s’ t, , 1 ' 1
Op, Func : Old Value x New Value ' :
, :<—>: Delay through Control Logic ,
ALUctr 1 OldVaue X New Value 1
T ' : T
1 H : 1
RegWr 1 OldVaue \ New Value M
: P! Register File Access Time Y\
busA, B] Old Value X New Value 1\
i ' <e—— ALU Dday n
busw ! Old Value X New Value |
| : i ‘}
Rs Rt
RegWr ALUctr Register Write
5y 5 5
| OccursHere
Rw Ra Rb
bUSW/ »| 3232-bit SResult
32CIk Registers 327 o
/>

cs 152 datapath.23

©DAP & SIK 1995

Break (5 Minutes)

cs 152 datapath.24

©DAP & SIK 1995

RTL: The OR Immediate Instruction

31

26 21

16

[op

[rs |

rt

immediate

6 bits 5 bits 5 bits

° ori rt, rs, imml16

* mem|

PC]

16 bits

Fetch the instruction from memory

* R[rt] <- R[rs] or ZeroExt(imm16)
The OR operation

Calculate the next instruction’s address

e PC<-PC+4
31 16 15
0000000000000000 immediate
16 bits

cs 152 datapath.25

16 bits

©DAP & SIK 1995

Datapath for Logical Operations with Immediate

° R[rt] <- R[rs] op ZeroExt[imm16]] Example: ori rt,rs,imm16
31 26 21 16 - 0
[oo | rs | rt] immediate |
6 bits 5 bits 5 bits . 16 bits
|Rd Rt
RegDst
_WRS Don't Care
RegWr 5 , 5+ 5+ (Rt) ALUctr
l
l busA
bUSW Rw Ra Rb
4| 3232bit 32 Result _
32 Registers 307 -
Clk busB ,
—> =
N
i a
imm16 Y B

cs 152 datapath.26

©DAP & SIK 1995

RTL: The Load Instruction

31 26 21 16 0
_ op [rs | ot | immediate |
*lw rtrs,imm16 6bits _ 5bits _ 5bits 16 bits
* mem[PC] Fetch the instruction from memory

e Addr <- R[rs] + SignExt(imm16)
Calculate the memory address

R[rt] <- Mem[Addr] Load the data into the register
e PC<-PC+4 Calculate the next instruction’s address
31 16 15 0
[oooooo0000000000 |O immediate |
16 hits 16 bits
31 16 15 0
| 1111111111111111 |1 immediate |
16 hits 16 bits

cs 152 datapath.27 ©DAP & SIK 1995

Datapath for Load Operations

° R[rt] <- Mem[R][rs] + SignExt[imm16]] Example:Iw rt,rs,imm16

31 2 21 16 - 0
|

[oo | rs | rt] immediate
6 bits 5 hits 5 hits . 16 bits

Rd Rt
RegDst
Mux Don't Care

Rs
RegWr (Rt) ALUctr
« | 5/ 5+ 5+ MemtoReg
Rw Ra Rb bush
busw .
4| 3232bit 32 . _
3C2:Ik Registers - 32" s
- MemWr g
9= 2 LY
m WrEn Adr
= Dataln
imm16 3 |32 = Data
16 g Cik | Memory
ALUSrc —

cs 152 datapath.28 ExtOp ©DAP & SIK 1995

RTL: The Store Instruction

31 26 21 16 0
[oo | rs | rt] immediate
6 bits 5 bits 5 bits 16 bits

o

sw rt, rs, imml16

mem[PC] Fetch the instruction from memory

Addr <- R[rs] + SignExt(imm16)
Calculate the memory address

Mem[Addr] <- R[rt] Store the register into memory

s PC<-PC+4 Calculate the next instruction’s address

cs 152 datapath.29 ©DAP & SIK 1995

Datapath for Store Operations

° Mem[R[rs] + SignExt[imm16] <- R[rt]] Example: sw rt,rs,imm16

31 26 21 16 0
[oo | rs | rt] immediate |
6 bits 5 hits 5 hits 16 bits

Rd Rt
RegDst Mux

RegW ALUctr
« |r5/ 5){ 5){ MemWr MemtoReg
Rw Ra Rb i
busw
o o] 3232it _
32 Registers o
Clk ™ 3P g
—q=> z vy Yy
= = /| WIEN Adr L~
= Dataln
imm16 8 I3 %2 Data
16 o) Memory
ALUSrc %C>

cs 152 datapath.30 ExtOp ©DAP & SIK 1995

RTL: The Branch Instruction

31 26 21 16 0
[oo | rs | rt] immediate

6 bits 5 bits 5 bits 16 bits

° beq rs,rt,imml6

* mem[PC] Fetch the instruction from memory

» Cond <- R[rs] - R[rt] Calculate the branch condition

* if (COND eq 0) Calculate the next instruction’s address
- PC <- PC+4+(SignExt(imm16) x 4)

* else
- PC < PC+4

cs 152 datapath.31 ©DAP & SIK 1995

Datapath for Branch Operations

° beq rs,rt,imml6 We need to compare Rs and Rt!
31 26 21 16 0
[oo | rs | rt] immediate |
6 bits 5 bits 5 bits 16 bits
Rd (Rt Branch Clk
[
RegDst vIT® ¢
Rs Rt i
RegWr 5], 5+ 5+ ALUdtr immiS Re ¢ Address
| 16 Logic
busw Rw Ra Rb
| 3232bit 32
32 Registers Y)
Clk busB ToInstruction
C> 32" > Memory
m
fad
imm16 3 |32
16 %

ALUSrc

cs 152 datapath.32 ©DAP & SIK 1995

Binary Arithmetics for the Next Address

° In theory, the PC is a 32-bit byte address into the instruction memory:
» Sequential operation: PC<31:0> = PC<31:0> + 4
» Branch operation: PC<31:0> = PC<31:0> + 4 + SignExt[Imm16] * 4

° The magic number “4” always comes up because:
* The 32-bit PC is a byte address
» And all our instructions are 4 bytes (32 bits) long

° In other words:
» The 2 LSBs of the 32-bit PC are always zeros
» There is no reason to have hardware to keep the 2 LSBs

° In practice, we can simply the hardware by using a 30-bit PC<31:2>:
» Sequential operation: PC<31:2> = PC<31:2> + 1
* Branch operation: PC<31:2> = PC<31:2> + 1 + SignExt[Imm16]
* In either case: Instruction Memory Address = PC<31:2> concat “00”

cs 152 datapath.33 ©DAP & SIK 1995

Next Address Logic: Expensive and Fast Solution

° Using a 30-bit PC:
» Sequential operation: PC<31:2> = PC<31:2> + 1
* Branch operation: PC<31:2> = PC<31:2> + 1 + SignExt[Imm16]
* In either case: Instruction Memory Address = PC<31:2> concat “00”

30’

P Addr<31:2>
—{ Addr<1:0>

Instruction
Memory

32

imm16

Instruction<15:0> 16 Instruction<31:0>

D\H xnIW o/

Branch

Zero

cs 152 datapath.34 ©DAP & SIK 1995

Next Address Logic: Cheap and Slow Solution

° Why is this slow?
» Cannot start the address add until Zero (output of ALU) is valid

° Does it matter that this is slow in the overall scheme of things?
* Probably not here. Critical path is the load operation.

30’
/ P Addr<31:2>
8 30 .
O ? Addr<1:0>
gy Instruction
Memory
Clk o 32
Q
imm16 =
Instruction<15:0> =
Instruction<31:0>
Branch Zero
cs 152 datapath.35 ©DAP & SIK 1995
RTL: The Jump Instruction
31 26 0
[oo | target address
6 bits 26 bits
°j target
*» mem[PC] Fetch the instruction from memory

* PC<31:2> <- PC<31:29> concat target<25:0>
Calculate the next instruction’s address

cs 152 datapath.36 ©DAP & SIK 1995

Instruction Fetch Unit

°

target

* PC<31:2> <- PC<31:29> concat target<25:0>

y)

cs 152 datapath.37

30’
- Addr<31:2>
PC<31:28> 30 —| Addr<1:0>
Vi) . 00"
' Target 30, 11 Instruction
Instruction<25:0> %f_» Z Memory
=
0 2

Branch

Zero

Jump

Instruction<31:0>

©DAP & SIK 1995

Putting it All Together: A Single Cycle Datapath

° We have everything except control signals (underline)

Branch Instruction<31:0> N
Instruction A A N >
Rd Rt Mgl Fetch Unit 2 1& & |8
RegDst Clk IR B |5
1Mux O Q= Q7 - o 19
Rs_ Rt s R Immi6
@Ml 5} 5+ 5+
MemtoReg
busw Rw Ra Rb Zero | MemWr
4+ | 3232bit 32 ‘ N
32 Reglsters bUSB/ ‘0\ 321 -
Clk - 0
> § \J Y 3P g
m = | WIEN Adr il
= 1] Daaln 35
e IR Deta
* clk | Memory
ALUSrc —
EXtop

cs 152 datapath.38

©DAP & SIK 1995

Where to get more information?

° To be continued ...

cs 152 datapath.39 ©DAP & SIK 1995

CS152
Computer Architecture and Engineering
Lecture 10: Designing a Single Cycle Control

February 17, 1995

Dave Patterson (patterson@cs) and
Shing Kong (shing.kong@eng.sun.com)

Slides available on http://http.cs.berkeley.edu/~patterson

cs 152 control.1 ©DAP & SIK 1995

Recap: The MIPS Instruction Formats

° All MIPS instructions are 32 bits long. The three instruction formats:

31 26 21 16 11 6 0
. R-type [op [rs [rt [rd | shamt | funct |
6 bits 5 bits 5 bits 5 hits 5 bits 6 bits
31 26 21 16 0
* Itype [op [rs [rt [immediate |
6 bits 5 bits 5 bits 16 bits
. J_type 31 26 0
[op [target address |
6 bits 26 bits

° The different fields are:
» op: operation of the instruction
e rs, rt, rd: the source and destination registers specifier
» shamt: shift amount
« funct: selects the variant of the operation in the “op” field
» address /immediate: address offset or immediate value
* target address: target address of the jump instruction

cs 152 control.2 ©DAP & SIK 1995

Recap: The MIPS Subset

31 26 21 16 11 6 0
° ADD and subtract op Is Tt d shamt funct

 addrd, rs, rt 6bits 5hits 5bits 5hits 5 hits 6 bits

e subrd,rs,rt

31 26 21 16 0

° OR Imm: [op rs rt immediate

e ori rt,rs,imml16 6 bits 5 bits 5 bits 16 bits
° LOAD and STORE

e lwrt, rs, imml6

e swrt, rs,imml6
° BRANCH:

* beqrs, rt,imml16
° JUMP: 31 26 0

. j target [op target address

6 hits 26 hits

cs 152 control.3

Recap: A Single Cycle Datapath

° We have everything except control signals (underline)
» Today’s lecture will show you how to generate the control signals

Instruction<31:0>

©DAP & SIK 1995

Branch _
3 Instruction o A A A Ll
Rd (Rt UMD—p Fetch Unit B8 |E |8
RegDst clk NN |8 |5
. 1Mux O _C> \Y \Y Y \
Rs Rt s Rd Imml6
Regt 5} s})
MemtoR
busi Rw Ra Rb Zero | Memwr MemtoReg
/| 3232-bit 32) I
32 Registers busB , ‘0\ 327 >
Clk A B =
= § Y VYV » |[&
m = /] WIEN Adr | {1
= 1) Dataln 3
imm16 = g 32 T Data
Q Clk Memory
ALUSrc —

5
(@]

cs 152 control.4

©DAP & SIK 1995

The Big Picture: Where are We Now?

° The Five Classic Components of a Computer

Processor

Control

Datapath

Memory

Input

Output

° Today’'s Topic: Designing the Control for the Single Cycle Datapath

cs 152 control.5

Outline of Today’s Lecture

° Recap and Introduction (10 minutes)

©DAP & SIK 1995

° Control for Register-Register & Or Immediate instructions (10 minutes)

° Questions and Administrative Matters (5 minutes)

° Control signals for Load, Store, Branch, & Jump (15 minutes)
° Building a local controller: ALU Control (10 minutes)

° Break (5 minutes)

° The main controller (20 minutes)

° Summary (5 minutes)

cs 152 control.6

©DAP & SIK 1995

RTL: The ADD Instruction

31 26 21 16 11 6 0
[oo | rs | 1t [rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

°add rd,rs,rt

* mem[PC] Fetch the instruction from memory
* R[rd] <- R[rs] + R[rt] The actual operation
* PC<-PC+4 Calculate the next instruction’s address

cs 152 control.7 ©DAP & SIK 1995

Instruction Fetch Unit at the Beginning of Add / Subtract
° Fetch the instruction from Instruction memory: Instruction <- mem[PC]

» This is the same for all instructions

y)

7

30
/ | Addr<31:2>
pCc<3lz2e> 0 — Addr<1:0>
i) . 00
_ Target = 1 Instruction
Instruction<25:0> %f—b = Memory
&
0

|> 32

Jump = previous | ngtryction<31:0>

Branch = previous | zerg = previous

©DAP & SIK 1995

cs 152 control.8

The Single Cycle Datapath during Add and Subtract
31 26 21 16 11 6 0
[oo | rs | tt [rd | shamt | funct |

° R[rd] <- R[rs] +/- R[rt]

Branch=0 Instruction<31:0> o
_ ® | nstruction A A A N
UMP=0 — gl Ferch Unit Rl |k |8
Rd (Rt B8 |5 |&
Reppst=1 oA - = AR AR N
ux
Rs Rt ALUctr = Add Rt Rs Rd Imml6
Ml sL 5*, 5*, or Subtract MemtoReg = 0
) Memtoreg = 0
- N Zero |MemWr=0
| 3232-bit / 0
3C2:|k Registers 32
<
_C> \ Y 32 %
m /—p| WIEN Adr 1
x |1 Dataln 35
imm16 el ES ’ i
16 % clk Memory
ALUSIc=0 q=
ExtOp=x |

cs 152 control.9 ©DAP & SIK 1995

Instruction Fetch Unit at the End of Add and Subtract

°PC <- PC+4
» This is the same for all instructions except: Branch and Jump

r}

4

30
va | Addr<31:2>
pC<3128> 30 —m-Addr<1:0>
27 > 00
_ Target ™ 1 Instruction
Instruction<25:0> W—» = Memory
=
0 2
Jump =0 Instruction<31:0>

Branch=0

Zero=x

cs 152 control.10 ©DAP & SIK 1995

The Single Cycle Datapath during Or Immediate

31 26 21 16 0
[oo [rs | rt | immediate |
° R[rt] <- R[rs] or ZeroExt[Imm16]
Branch =0 Instruction<31:0> _
_ Instruction A A NN
Rd Rt MMR=0— pachunit | (R [& B |8
N N = 5
RegDst = 0 ﬁlm = Ck —> g lo o IV
ux
Rs Rt - Rt Rs Rd Imml6
MI s} 5* 5+ ALUctr =Or MemtoReq = 0
o RW Ra Rb Zero |MemWr =0
32 32-bit) 5
3 Registers 32
Clk <
—aq= YV o |5
m 7| WIEN Adr 1
= 1J Dataln 35
imm16 813 3 Data
16 & ok | Memory
ALUSc=1 — 9=
EXtOQZOI

cs 152 control.11

Questions and Administrative Matters

° Midterm next Wednesday 2/22/95:
» 5:00pm to 8:00pm, Sibley Auditorium
* No class on that day

° Things to bring to midterm:
* Pencil, calculator, two 8.5” x 11" pages of handwritten notes

« Sit every other chair, every other row (odd row & odd seat)

* Meet at LaVal's pizza after the midterm ($5/person)
Need a headcount. How many are definitely coming?

° Next homework assignment due Tuesday, 2./21/95
* Monday is a holiday

cs 152 control.12

©DAP & SIK 1995

©DAP & SIK 1995

The Single Cycle Datapath during Load

31 26 21 16 0
[oo [rs | rt | immediate
° R[rt] <- Data Memory {R[rs] + SignExt[imm16]}
Branch =0 Instruction<31:0> _
_ Instruction alata fa™
Rd (Rt M= —l pechunit [(B [B |E (2
RegDst = 0 Clk —q > B 8 & i
1Mux O V gV wV
Rs Rt Rt Rs Rd Imml6
Ml 54 5*, 5+ MemtoReg = 1
o RW Ra Rb Zero |MemWr =0
| 32 32-hit »l0
3C2:|k Registers O 32" -
> z
9= = \i g
c
m = /—p| WIEN Adr 1
= 1) Dataln
imm16 g 7 32 Data 2
16 & ok | Memory
ALUSc=1 — 9=
ExtOp=1!

cs 152 control.13

The Single Cycle Datapath during Store
31 26 21 16

©DAP & SIK 1995

op rs immediate

I I [v |

° Data Memory {R[rs] + SignExt[imm16]} <- R[rt]

Branch=0 Instruction<31:0> _
R Ingtruction alata fa™
Rd Rt UMD =9 — Fetch Unit S g : S
RegDst = x @lM . Ck —g> gle g LV
ux
Rs Rt ALUctr s Rd Immi6
RegWr=0 Wr:ol 5 5* 5* =Add MemtoReg = x
- W Ra Rb Zero |MemWr=1
4 | 3232bit)
32 Regigters 327 -
Clk <
—q=> \ 2 &
m 7/ WrEn Adr | 1
= Dataln 32
imm16 g_ Data
5] Clk Memory
ALUSc=1 —Q=>
ExtOp=1l

cs 152 control.14

©DAP & SIK 1995

The Single Cycle Datapath during Branch
31 26 21 16 0
[oo [rs | rt | immediate |

°if (R[rs]-R[rt] == 0) then Zero <- 1; else Zero <- 0
Branch=1 Instruction<31:0>

UMb =0 Instruction
HMP =3 — = Fetch Unit

Rd (Rt
RegDst = x Ck —>
1 Mux O

ALUctr =

|

<G¢Te>
<0¢-9T>
<GTTT>
<GT:0>

Rt Rs Rd Imml6

RegWr =0 Rs Rt
—egr—l 5} 5*« 5* Subtract MemtoReg = x
Zero |MemWr =0
busw Rw Ra. Rb
4 | 3232-bit . 210
32 Registers 32" .
Clk > <
o YV » [
m /| WEN Adr | o1
= |l Dataln
imm16 g 32' o 2 Data
16 g ok | Memory
ALUSc=0 — 0=
ExtOp=x |

cs 152 control.15 ©DAP & SIK 1995

Instruction Fetch Unit at the End of Branch
31 26 21 16 0

| op | rs | rt | immediate |

°if (Zero ==1) then PC=PC + 4 + SignExt[imm16]*4 ; else PC=PC +4

30"
va | Addr<31:2>
pc<sl2e> 30 —p|Addr<1:0>
27 > 00
_ Target ™ 1 Instruction
Instruction<25:0> W—» = Memory
=
0 2
Jump =0 Instruction<31:0>

AssumeZero=1tosee
theinteresting case.

Branch=1

Zero=1

cs 152 control.16 ©DAP & SIK 1995

The Single Cycle Datapath during Jump
1 26

3 0
[oo | target address |
° Nothing to do! Make sure control signals are set correctly!
Branch=0 Instruction<31:0> _
_ Instruction alata fa™
Rd (Rt UMP=L1— Ferch Unit Ele B2
RegDst = x Clk a (=] a |9
RegDst = x @1 VIR —> g 1o g [¢
ReaWr = 0 Rs Rt ALUctr = x Rt Rs Rd Imml6
- | > 5+ 5+ MemtoReg = x
- RW Ra Rb Zero |MemWr =0
/| 3232-bit , 210
32 Registers ™ 32" >
ok 0 z
Q = YV » |5
m = | WIEN Adr | {1
= > 1 Dataln Y]
imm16) 3 Data
16 o) Clk Memory
ALUSc=x — 9=
ExtOp = x |

cs 152 control.17 ©DAP & SIK 1995

Instruction Fetch Unit at the End of Jump
31 26

[op [target address

° PC <- PC<31:29> concat target<25:0> concat “00”

r}

4

30
va | Addr<31:2>
PC<3L:28> 30 o> Addr<1:0>
i

. Target Instruction
Instruction<25:0> Memory
32

Jump =1 Instruction<31:0>

Branch=0 |zg0=x

cs 152 control.18 ©DAP & SIK 1995

A Summary of the Control Signals

S(_ae—l—_>>func 10 0000{ 10 0010 WeDon't Care:-)
Appendix A op |00 0000] 00 0000| 00 1101} 10 0011 10 1011| 00 0100} 00 0010
add sub ori Iw sw beq | jump
RegDst 1 0 0 0 X X X
ALUSrc 0 0 1 1 1 0
MemtoReg 0 0 0 1 X X X
RegWrite 1 1 1 1 0 0 0
MemWrite 0 0 0 0 1 0 0
Branch 0 0 0 0 0 1 0
Jump 0 0 0 0 0 0 1
ExtOp X X 0 1 1 X X
ALUctr<2:0> | Add |Subtract| Or Add Add |Subtract| xxx
31 26 21 16 11 6 0
Rtype [op | rs | 1t [rd shamt funct | add, sub
I-type | op | rs | rt | immediate | ori, lw, sw, beq
Jtype | op | target address | jump
cs 152 control.19 ©DAP & SIK 1995

The Concept of Local Decoding

op 00 0000 001101100011} 10 1011} 00 0100 00 0010
R-type ori lw sw beq jump
RegDst 1 0 0 X X X
ALUSrc 0 1 1 1 0 X
MemtoReg 0 0 1 X X X
RegWrite 1 1 1 0 0 0
MemWrite 0 0 0 1 0 0
Branch 0 0 0 0 1 0
Jump 0 0 0 0 0 1
ExtOp X 0 1 1 X X
ALUop<N:0> R-type’ Or Add Add |Subtract| xxx
func /
(L/—> Main 0 Cﬁrl;tlrJoI ALU(;;;
6 Control ALUOZ/ > (Local)

cs 152 control.20 ©DAP & SIK 1995

The Encoding of ALUop

func /
2 7/—> Main 6 ALU AL UGt
6 Control | ALUop , | Control _3/_>

N7 | (Loca)

° In this exercise, ALUop has to be 2 bits wide to represent:
* (1) “R-type” instructions
» “I-type” instructions that require the ALU to perform:
- (2) Or, (3) Add, and (4) Subtract

° To implement the full MIPS ISA, ALUop hat to be 3 bits to represent:
* (1) “R-type” instructions
» “I-type” instructions that require the ALU to perform:
- (2) Or, (3) Add, (4) Subtract, and (5) And (Example: andi)

R-type ori lw sw beq jump
AL Uop (Symbolic) “R-type” Or Add Add [Subtract| xxx
ALUop<2:0> 100 010 000 000 001 XXX
cs 152 control.21 ©DAP & SIK 1995

The Decoding of the “func” Field

func
CL/—P Main 67 CALU | M/_>
6 Control | ALUop , ontro 2

N7 B (Local)
R-type ori lw sw beg | jump
ALUop (Symbolic) “R-type” Or Add Add |Subtract] xxx
ALUop<2:0> 100 010 000 000 001 | xxx
31 26 21 16 11 6 0
R-type op rs rt rd shamt [funct |

Recall ALU Homework (also P. 286 text):

funct<5:0> | Instruction Operation ALUctr<2:0> | ALU Operation
10 0000 add 000 Add
10 0010 subtract 001 Subtract
10 0100 and 010 And
10 0101 or 110 Or
101010 set-on-less-than 111 Set-on-less-than

cs 152 control.22 ©DAP & SIK 1995

The Truth Table for ALUctr

/

A

funct<3:0> | Instruction Op.
L0000 add
ALUop | Rtype [ori lw sw beq / 0010 subtract
(Symbolic) | “Rtype’ | or Add | Add [subtract| [/ 0100 and
ALUop<2:0>[,100 010 | 9oo [000 [oo1 |} o101 or
1010 set-on-less-than

AL Uop / func ALU ALUctr
bit<2> bii,Z> bit<0> ¥bit<3> bit<2> bit<l> hit<0> /éperation bit<2> bit<1> bit<0>
o /o 0/ X x | Add 0 1 0
0 / X 1 X X X X / Subtract 1 1 0
0 _/ 1 X X X X X _[Or 0 0 1
17 x X 0 0 0 o” Add 0 1 0
1 X X 0 0 1 0 Subtract 1 1 0
1 X X 0 1 0 0 And 0 0 0
1 X X 0 1 0 1 Or 0 0 1
1 X X 1 0 1 0 Seton < 1 1 1

cs 152 control.23

Break (5 Minutes)

cs 152 control.24

©DAP & SIK 1995

©DAP & SIK 1995

The Logic Equation for ALUctr<2>

ALUop func
bit<2> bit<1> bit<0> [bit<3> bit<2> bit<1> bit<0> [ALUctr<2>
0 X 1 X X X X 1
1 X X /0\ © 1 0 1
1 X X (1] o 1 0 1

° ALUctr<2>

cs 152 control.25

The Logic Equation for ALUctr<1>

This makesfunc<3>adon’t care

= IALUop<2> & ALUop<0> +
ALUop<2> & !func<2> & func<1> & !func<0>

©DAP & SIK 1995

° ALUctr<1>

cs 152 control.26

= IALUop<2> & !ALUop<0> +
ALUop<2> & !func<2> & !func<0>

AL Uop func
bit<2> bit<1> bit<0> | bit<3> bit<2> bit<1> bit<0> | ALUctr<1>
0 0 m X X 1
0 X \l) X X X X 1
1 X e 0 0 0 0 1
1 X X 0 0 1 0 1
1 X X 1 0 1 0 1
N4 NS

©DAP & SIK 1995

The Logic Equation for ALUctr<0>

ALUop func
bit<2> bit<1> bit<0> | bit<3> bit<2> bit<1> bit<0> | ALUctr<0>
0 1 X X X X X 1
1 X X 0 1 0 1 1
1 X X 1 0 1 0 1

° ALUctr<0> = !ALUop<2> & ALUop<0>
+ ALUop<2> & !func<3> & func<2> & !func<1l> & func<0>
+ ALUop<2> & func<3> & !func<2> & func<l> & !func<0>

cs 152 control.27 ©DAP & SIK 1995

The ALU Control Block

func

_/l—> ALU
6 ALUctr

ALUop Control —3/—>

—3/—> (Local)

¢ ALUctr<2> = IALUop<2> & ALUop<0> +
ALUop<2> & !func<2> & func<1> & !func<0>

° ALUctr<1> = IALUop<2> & !'ALUop<0> +
ALUop<2> & !func<2> & !func<0>

° ALUctr<0> = !ALUop<2> & ALUop<0>
+ ALUop<2> & !func<3> & func<2> & !func<l> & func<0>
+ ALUop<2> & func<3> & !func<2> & func<l> & !func<0>

cs 152 control.28 ©DAP & SIK 1995

The “Truth Table” for the Main Control
RegDst

———> func
op NP IEYRVET: —6/—> ALU |ALUctr,
6/ | contral : Control 3
ALUop , o | (Local)
3/ o
op 00 0000 001101} 10 0011} 10 1011} 00 0100| 00 0010
R-type ori lw sw beqg jump

RegDst 1 0 0 X X X
ALUSrc 0 1 1 1 0 X
MemtoReg 0 0 1 X X X
RegWrite 1 1 1 0 0 0
MemWrite 0 0 0 1 0 0
Branch 0 0 0 0 1 0
Jump 0 0 0 0 0 1
ExtOp X 0 1 1 X X
ALUop (Symbalic) “R-type” Or Add Add |Subtract| xxx
ALUop <2> 1 0 0 0 0 X
ALUop <1> 0 1 0 0 0

AL Uop <0> 0 0 0 0 1

cs 152 control.29 ©DAP & SIK 1995

The “Truth Table” for RegWrite

op 00 0000 00 110110 0011} 10 1011{ 00 0100 00 0010
R-type ori Iw sw beg | jump
RegWrite 1 1 1 X X X

° RegWrite = R-type + ori + lw

=lop<5> & lop<4> & lop<3> & lop<2> & lop<1> & lop<0> (R-type)
+ lop<5> & lop<4> & op<3> & op<2> & !lop<1l> & op<0> (ori)
+ op<5> & lop<4> & lop<3> & lop<2> & op<1> & op<0> (Iw)
0p<5> 0p<5>_ op<5>_ 0p<5> op<5>, 0p<5>,

.<0> .<0> -<0> .<0> .<O> .op<0>
R-type ori Iw sw beq jump

T

cs 152 control.30 ©DAP & SIK 1995

RegWrite

~—1

PLA Implementation

op<5>, op<5>, op<5>,

<0> <0>

R-type ori

op<5>,

of the Main Control

op<5> . op<5>,

<0> <0> op<0>

sw beq jump

.<o>
lw
?
®

i

RegWrite

y—~ ALUSrc

RegDst

MemtoReg

MemWrite

Branch

Yvyy

Jump

ExtOp

i

ALUop<2>

ALUop<1>

!

cs 152 control.31

'Y Y

AL Uop<0>

|

©DAP & SIK 1995

Putting it All Together: A Single Cycle Processor

ALUop / »! ALU
/ - ALUctr
_ RegDst 3 func Control ———F»
P4 | Main insr<567 3
6 Control | ALUSic nstrss:
Instr<31:26> : Branch Instruction<31:0> o
3 Instruction alata fa™
Rd Rt UMD—p{ Feich Unit e 2|k e
RegDst Clk —0 N N 5 |ao
1 Mux O > Y v Y \Y
Rs Rt s Rd Imml6
@QMI 5} 5+ 5+
MemtoReg
- W Ra Rb Zero | MemWr
4 p| 3232:bit 32 , IS
32 Registers |busB , _ [ON 32" u
Clk i <
= s Y VYV » |5
m a /] WIEN Adr | {1
= 1 Dataln 32
imm16 8 |32 Data
Instr<15:0> 16 & ik Memory
ALUSrc Qg

5
(@]

cs 152 control.32

©DAP & SIK 1995

How is this Different from a Real MIPS Processor?

° The effect of load in a real MIPS Processor is delayed:

- lw $1, 100 ($2) /l Load Register R1

- add $3,%$1,$0 // Move “old” R1into R3

- add $4, $1, $0 /l Move “new” R1 into R4
» The effect of load in our single cycle proccess is NOT delayed

- lw $1,100 ($2) I/l Load Register R1

- add $3, %1, $0 /I Move “new” R1 into R3

° The effect of branch and jump in a real MIPS Processor is delayed:
- Instruction Address: 0x00 j 1000
- Instruction Address: 0x04 add $1, $2, $3
- Instruction Address: 0x1000 sub $1, $2, $3
» Branch and jump in our single cycle proccess is NOT delayed
- Instruction Address: 0x00 j 1000
- Instruction Address: 0x1000 sub $1, $2, $3

cs 152 control.33 ©DAP & SIK 1995

Worst Case Timing

Clk I l_
—p ' 4—Clk-0-Q 5
pc OldVaue | X NewVaue \ X
: @—— P Instruction Memoey Access Time :
(F;Z Eﬁnl?:d’ \ OldVaue X New Value \
Y ! E<—>: Delay through Control Logic !
AlLUctr | OldVaue X New Value |
[: A [
ExtOp j OldVaue New Value :
. : ! 1
ALUSICc 1 OldValue ! / \ New Value 1
t 1
1 H 1
MemtoReg | OldVaue ! / New Vaue Register |
! : ' Write Occurs :
RegWr \ OldVaue X\ New Value 0
! . Register File Access Time \ Y
busA j Old Vaue : X New Vaue \
! Delay through Extender & Mux ret——p» ; !
busB \ Old Vaue ' X: New Value \i
! ' <— ALU Delay
Address [Old Vaue ' X New Value
: DataMemory Access Time e———»
busw i___oldvaue : Y New 1]
T

cs 152 control.34 : ©ODAP & gl{< 1995

Drawback of this Single Cycle Processor

° Long cycle time:
» Cycle time must be long enough for the load instruction:
PC’s Clock -to-Q +
Instruction Memory Access Time +
Register File Access Time +
ALU Delay (address calculation) +
Data Memory Access Time +
Register File Setup Time +
Clock Skew

° Cycle time is much longer than needed for all other instructions

cs 152 control.35 ©DAP & SIK 1995

Where to get more information?

° Chapter 5.1 to 5.3 of your text book:

» Daid Patterson and John Hennessy, “Computer Organization &
Design: The Hardware / Software Interface,” Morgan Kaufman
Publishers, San Mateo, California, 1994.

° One of the best PhD thesis on processor design:

» Manolis Katevenis, “Reduced Instruction Set Computer
Architecture for VLSI,” PhD Dissertation, EECS, U C Berkeley, 1982.

° For areference on the MIPS architecture:
» Gerry Kane, “MIPS RISC Architecture,” Prentice Hall.

cs 152 control.36 ©DAP & SIK 1995

CS152
Computer Architecture and Engineering
Lecture 11: Designing a Multiple Cycle Processor

February 24, 1995

Dave Patterson (patterson@cs) and
Shing Kong (shing.kong@eng.sun.com)

Slides available on http://http.cs.berkeley.edu/~patterson

cs 152 multipath..1 ©DAP & SIK 1995

A Single Cycle Processor

ALUop / > ALU
7 > ALUctr
_ RegDst 3 func Control ———F»
op Main [————» Inst <5'0>_6/_> 3
6/ Control [ALUSrc e
) —
Instr<31:26> Branch Instruction<31:0> L
3 ®1 Instruction o TaTa Ta
RegDst Clk Ul o a1 o
egl VIR _C> \Y v Y v
Rs Rt s Rd Imml6
MI 5 5+ 5+
MemtoReg
- S RoRb Zero | MemWr
4| 3232bit 32 , >0
32 Registers [busB, [3N 32’ -
Clk i <
—g> = Y VYV » |[&
m < /] WIEN Adr | {1
X 1] Daaln 5,
imm16 3 32 Data
Instr<15:0> 16 % Clk Memory
ALUSrc O

5
(@]

cs 152 multipath..2 ©DAP & SIK 1995

Push: Instruction Fetch Unit

y)

cs 152 multipath..

3

Branch

Zero

Pop: A Single Cycle Processor

Jump

30’
- Addr<31:2>
PC<31:28> 30 —| Addr<1:0>
Vi) . 00"
' Target 30, 11 Instruction

Instruction<25:0> %f_» Z Memory
=

0 2

Instruction<31:0>

©DAP & SIK 1995

ALUop / »! ALU
gl ALUctr
o _ RegDst 3/ func , | control —/—>3
—/—> Main Instr<5:0> 6
6 Control | ALUSIC
Instr<31:26> Branch Instruction<31:0> o
Instruction alata fa™
Rd Rt UMDl et Unit e 2|k e
RegDst Clk —0 N N 5 |ao
1Mux O > \Y \Y Y \
Rs Rt s Rd Imml6
@QMI 5} 5+ 5+
MemtoReg
- W Ra Rb Zero | MemWr
4 p| 3232:bit 32 , IS
32 Registers |busB , _ [ON 327 >
Clk 27 ' =
= s Y VYV » |5
m a /] WIEN Adr | {1
= 1 Dataln 32
imm16 8 |32 Data
Instr<15:0> 16 & ik Memory
ALUSrc Qg
EXOp

cs 152 multipath..4

©DAP & SIK 1995

Push: The Main Control
op<5>, op<5>, op<5>, op<5>, op<5>_ op<5>,

<0> <0> <0> <0> op<0>

R-type ori sw beq jump

.<0>
Iw .
I \ RegWrite
[

"~ ALUSrc
® RegDst
MemtoReg
MemWrite
Branch

i

YvYyyvyy

Jump

® ExtOp

ALUop<2>
ALUop<1>

T AL Uop<0>
® >

©DAP & SIK 1995

i

'Y Y

cs 152 multipath..5

Outline of Today’s Lecture

° Recap and Introduction (5 minutes)

o

Introduction to the Concept of Multiple Cycle Processor (15 minutes)

Questions and Administrative Matters (5 minutes)

[

Multiple Cycle Implementation of R-type Instructions (15 minutes)
° What is a Multiple Cycle Delay Path and Why is it Bad? (10 minutes)
° Break (5 minutes)

Multiple Cycle Implementation of Or Immediate (5 minutes)

Multiple Cycle Implementation of Load and Store (15 minutes)

° Putting it all Together (5 minutes)

cs 152 multipath..6 ©DAP & SIK 1995

Drawbacks of this Single Cycle Processor

° Long cycle time:
» Cycle time must be long enough for the load instruction:

PC’s Clock -to-Q +

Instruction Memory Access Time +
Register File Access Time +

ALU Delay (address calculation) +
Data Memory Access Time +
Register File Setup Time +

Clock Skew

° Cycle time is much longer than needed for all other instructions.
Examples:

* R-type instructions do not require data memory access
» Jump does not require ALU operation nor data memory access

cs 152 multipath..7

©DAP & SIK 1995

Overview of a Multiple Cycle Implementation

° The root of the single cycle processor’s problems:
» The cycle time has to be long enough for the slowest instruction

° Solution:

* Break theinstruction into smaller steps
» Execute each step (instead of the entire instruction) in one cycle

Cycle time: time it takes to execute the longest step
Keep all the steps to have similar length

» This is the essence of the multiple cycle processor

° The advantages of the multiple cycle processor:
* Cycle time is much shorter
- Different instructions take different number of cycles to complete

Load takes five cycles
Jump only takes three cycles

» Allows a functional unit to be used more than once per instruction

cs 152 multipath..8

©DAP & SIK 1995

The Five Steps of a Load Instruction

1 Instruction Fetch | Instr Decode/ , Address ,DataMemory , RegWr
—> Req. Fetch 4—»4—»4—»:
clk I L " [[

—»! €— Clk-10-Q

pc OldVdue X New Value xl
! @———} Instruction Memory:Access Time | : !
CR);" RFEn'Ed' | Odvawe X Newvaie . ' ' "
, 1 N T] " . : 1
, :<—>E Delay through Control !_oglc ; \
ALUctr 1 Old Value : X New Vaue . : 1
' : N . : : '
ExtOp j Old Value ' / L New Value ' .
! : : : : : !
ALUSIc 1 Old Value ' / New Value ! ' :
; . . : : : Lo
RegWr 1 Old Value : V4 New Vaue : I g
: '<—{—->' Register File A:ccess Time ' : Q
busA 1 Old Vaue : X New Value . 1 il
| Delay through Extender & Mux -l : : | >
busB 1 Old Vaue ' X New Value ! =
: «——ALUDdy | i
Address ! Old Value X New Value =
1 Data Memory Access Time : : D
busw ! Old Value . X New !

cs 152 multipath..9

' ©DAP & SIK 1995

Register File & Memory Write Timing: Ideal vs. Reality

° In previous lectures, register file and memory are simplified:
» Write happens at the clock tick

» Address, data, and write enable must be
stable one “set-up” time before the clock tick

° In real life:
» Neither register file nor ideal memory has the clock input
» The write path is a combinational logic delay path:

Write enable goes to 1 and Din settles down

Memory write access delay

Din is written into mem[address]

* Important: Address and Data must be
stable BEFORE Write Enable goes to 1

cs 152 multipath..10

%
%

WrEn
FAdr

I deal
Memory

tDin Dout

—/—1 Din Dout

32

A
?cn(

32

WrEn
H Adr
I deal
Memory

i3

©DAP & SIK 1995

Race Condition Between Address and Write Enable

° This “real” (no clock input) register file may not
work reliably in the single cycle processor because:

» We cannot guarantee Rw will
be stable BEFORE RegWr = 1

» Thereis a“race” between Rw (address)
and RegWr (write enable)

° The “real” (no clock input) memory may not work
reliably in the single cycle processor because:

» We cannot guarantee Address will
be stable BEFORE WrEn =1

* There is arace between Adr and WrEn

cs 152 multipath..11

How to Avoid this Race Condition?

° Solution for the multiple cycle implementation:

* Make sure Address is stable by the end of Cycle N

RaReQWr

Rb busA|—=—9»
Reg File

RW pusg |+
busw 32

PRI

I
WrEn
—/— Adr

32 [|deal
Memory

—/—1Din Doutf+—
32 32

©DAP & SIK 1995

» Assert Write Enable signal ONE cycle later at Cycle (N + 1)
» Address cannot change until Write Enable is disasserted

cs 152 multipath..12

©DAP & SIK 1995

Dual-Port Ideal Memory

° Dual Port Ideal Memory

* Independent Read (RAdr, Dout) and Write (WAdr, Din) ports
* Read and write (to different location) can occur at the same cycle

° Read Port is a combinational path:
* Read Address Valid -->
* Memory Read Access Delay -->
 Data Out Valid

° Write Port is also a combinational path:
* MemWrite=1 -->
* Memory Write Access Delay -->
» Data In is written into location[WrAdr]

cs 152 multipath..13

Questions and Administrative Matters

cs 152 multipath..14

MemWr

{

RAdr<1:0>|
<31:2>
Ideal

Memory
WrAdr

Din Dout e
32

DT

©DAP & SIK 1995

©DAP & SIK 1995

Instruction Fetch Cycle: In the Beginning

° Every cycle begins right AFTER the clock tick:
* mem[PC] PC<31:0>+4

clk : L

/'\;’4— One*“Logic” Clock Cycle

\4

You are here!
&PCWr:?
o) :‘
1O 2 | Memwr=2 IRWr=?
/ o 32
Clk % RAdr a 4
c 32
Ideal =}
Memory S ALU
=P rade Py Control
32 Dout & ?
e L A ALUop=?
O

cs 152 multipath..15 ©DAP & SIK 1995

Instruction Fetch Cycle: The End

° Every cycle ends AT the next clock tick (storage element updates):

* IR <-- mem[PC] PC<31:0> <-- PC<31:0>+4
Gy, | 0
4——— One“Logic’ Clock Cycle =
You are herel
PCWr=1¢
3%
PO 2 |Memwr=0, IRWr=1 ?
* 00
A 2
Clk RAdr 2 4
ud 32
Ideal =}
> Memory S ALU
—/—>3 WrAdr X Control
Din Dout 8 ?
%4> A ALUOPp = Add
O

Clk

cs 152 multipath..16 ©DAP & SIK 1995

Instruction Fetch Cycle: Overall Picture

PCWrCond=x
Zero

1: PCWr, IRWr

x: PCWrCond

®
lorD=0 MemWr=0 |RWr=1 ALUSEA=0 [1
2 | =
4
732
0 =3
2 |= RAdr a
c c busA
2 = Ideal =
Memory S
ﬁ—b WrAdr 32 By
¥ _4 pfDin Dot 8 busB 32
32 ALU
Control
ALUSelB=00
EE— ALUOp=Add
cs 152 multipath..17 ©DAP & SIK 1995
Register Fetch / Instruction Decode
° busA <- RegFile[rs] ; busB <- RegFile[rt] ;
° ALU is not being used: ALUctr = xx
PCWr=0 PCWrCond=0
Zero m
lorD=x MemWr=0 IRWr=0 RegDst=x RegWr=0 ALUSelA=x [1 4—32\—
2 | =
+ <
75 0 LQ - Zero
S <
0 Ra c
2 |z RAdr = 2
= Rb busA]>
32 I I deal RegFile | 32 -
7 Memory 4 0
F—-| WrAdr |32 Rw » N 32
32 Din Dout busw buss| 32 , 32
2 3 ALU
Control
Gotothe Opq—g—
I _
control pyne mm ALUSelB=xx
T ALUOp=xx

cs 152 multipath..18

©DAP & SIK 1995

Register Fetch / Instruction Decode (Continue)

° busA <- Reg]rs] ; busB <- Reg|rt] ;

° Target <- PC + SignExt(Imm16)*4

PCWr=0 PCWrCond=0
Zero

Rfetch/Decode

ALUOp=Add
1: BrWr, ExtOp
ALUSelB=10

X: RegDst, PCSrc
lorD, MemtoReg

Others: 0s

PCSrc=x BrWwr=1

lorD=x MemWr=0 IRWr=0 RegDst=x RegWr=0 ALUSEA=0 [1
<
32
7 £
1 732
0 Ra
R |z RAdr
c Rb busA
3,@ »lr | el Reg File
Memory
— WrAdr |32 Rw
82 —— Din Dout busW busB
32 ALU
Beq Control
-—
Rtypeg—]Control P < A ALUSAB=10
Ori qg— Func |y ALUSEIB=1U
Memory q— 6 ALUOp=Add
cs 152 muIIipth..lQI ExtOp=1

Branch Completion

° if (busA == busB)
* PC <- Target

PCWr=0 PCWrCond=1

©DAP & SIK 1995

BrComplete

lorD=x MemWr=0 IRWr=0 RegDst=x

AL UOp=Sub
ALUSelB=01

X: lorD, Mem2Reg
RegDst, ExtOp

1: PCWrCond
ALUSelA
PCSrc

RegWr=0 ALUSeA=1

32
[4
| 32
0 P Ra
2 |z RAdr R b
c - USA
32 I I deal " | Reg File
[Memory
+— WrAdr |32 Rw »
32 Din Dout buswW busB
2 ALU
<<?2 Control
mm 1 ALUSelB=01
-
16 ALUOp=Sub
ExtOp=x

cs 152 multipath..20

©DAP & SIK 1995

Instruction Decode: We have a R-type!

° Next Cycle: R-type Execution

PCWr=0 PCWrCond=0
Zero

MemWr=0 IRWr=0 RegDst=x

lorD=x

PCSrc=x
RegWr=0 ALUSEA=0

BrWwr=1

1
<
32
£
L
0 Ra
2 |= RAdr
c Rb busA
3? - x | deal Reg File
Memory
—- WrAdr |32 Rw
82 —/—»| Din Dout busW busB
32 ALU
Beg Control
-—
Rtype g Control Op|~& A _
Ori Func ALUSeIB=10
Memory g— 6 ALUOp=Add
cs 152 muIIipth..Zl‘ ExtOp=1 ©DAP & SIK 1995
R-type Execution
RExec ~T1: Regg
° ALU Output <- busA op busB ALUSEA
ALUSeB=01
ALUOp=Rtype
x: PCSrc, lorD
PCWr=0 PCWrCond=0 MR PCSrc=x ~ Brwr=0
Zero
MemWr=0 IRWr=0 RegDst=1 RegWr=0 ALUSeA=1 [1 > Target
| I \
oy

~
I—§->2 0 RAd él - Ra
r
§ /P Rb busA|
3 olr | deal 5 " | RegFile
’ Memory R i
32,‘ P \WrAdr w
Din Dout [|—> busw busB
2

Imm

Extend
16
ExtOp=x

cs 152 multipath..22

ALU

<<?2 Control
A
,l
32 ALUOp=Rtype
MemtoReg=x ALUSelB=01

©DAP & SIK 1995

R-type Completion
° R[rd] <- ALU Output

ALUSelB=01
x: lorD, PCSrc
ExtOp

PCWr=0 PCWrCond=0

| \
x
/ » -
Nz - Oz LQ Zero
0 Ra -
2 |= RAdr X 32
w» 5 | deal p RO busAl , o] >
vl Reg File | 32 c
4 Memory R 4—»10 >
/— WrAdr W # »|1
32 Din Dout busW busB| 32) 2
32 - 3 ALU
<«<2 Control
A

Extend ‘e
|
mm 16 2 ALUOp=Rtype
EXtOp=x | MemtoReg=0 ALUSelB=01

©DAP & SIK 1995

cs 152 multipath..23

A Multiple Cycle Delay Path

° There is no register to save the results between:
» Register Fetch: busA <- Reg[rs] ; busB <- Reg[rt]
* R-type Execution: ALU output <- busA op busB
* R-type Completion: Reg[rd] <- ALU output

Register hereto save
outputsof Rfetch?__,| ALUsAA

PCWr Register hLeto save
=3 Rs é Ra outputs of RExec?
g éz R é Rb bush 7
=} .
= 0 Reg File | 32 4
RN
& Rdl;J busw busB| 32
O AW ALU

I 1 Control
ALUselB
— ALUOp

cs 152 multipath..24 ©DAP & SIK 1995

A Multiple Cycle Delay Path (Continue)

° Register is NOT needed to save the outputs of Register Fetch:
* IRWr = 0: busA and busB will not change after Register Fetch

° Register is NOT needed to save the outputs of R-type Execution:
* busA and busB will not change after Register Fetch

» Control signals ALUSelA, ALUSelB, and ALUOp
will not change after R-type Execution

» Consequently ALU output will not change after R-type Execution

° In theory (P. 316, P&H), you need aregister to hold a signal value if:
* (1) The signal is computed in one clock cycle and used in another.

* (2) AND the inputs to the functional block that computes this signal
can change before the signal is written into a state element.

° You can save aregiser if Cond 1is true BUT Cond 2 is false:

* But in practice, this will introduce a multiple cycle delay path:

- Alogic delay path that takes multiple cycles to propagate
from one storage element to the next storage element

cs 152 multipath..25 ©DAP & SIK 1995

Pros and Cons of a Multiple Cycle Delay Path

° A 3-cycle path example:
* IR (storage) -> Reg File Read -> ALU -> Regr File Write (storage)

° Advantages:
* Register savings
* We can share time among cycles:

- If ALU takes longer than one cycle, still “a OK” as long
as the entire path takes less than 3 cycles to finish

Ra buSA
U
Rb 7

Reg File | 32
Rw

7
buswW busB| 32

ALU
Control

cs 152 multipath..26 ©DAP & SIK 1995

Pros and Cons of a Multiple Cycle Delay Path (Continue)

° Disadvantge:

« Static timing analyzer, which ONLY looks at delay between two
storage elements, will report this as a timing violation

* You have to ignore the static timing analyzer’s warnings
* But you may end up ignoring real timing violations
» | always TRY to put in registers between cycles to avoid MCP

— Rs
S / Ra
SR 5 busA
8 |2t [Regrite |
= =10 eg File
& Rdlj busw busB| 32 S——
O \ ALU

1 Mux

M Control

ALUselB
cs 152 multipath..27 ©DAP & SIK 1995

Break (5 Minutes)

cs 152 multipath..28 ©DAP & SIK 1995

Instruction Decode: We have an Ori!

° Next Cycle: Ori Execution

PCWr=0 PCWrCond=0
Zero

MemWr=0 IRWr=0 RegDst=x RegWr=0 ALUSEA=0

PCSrc=x BrWwr=1

lorD=x

1
<
. 32 g
7%
Rs
5 S 7-3>-| Ra
2 |z RAdr = Rt 5
= c . Rb busA
32 |® Ideal 2 Y15 |RegFile
7 Memory S Rtl=
—Wadr |32 |D c Rw
32 Din Dout & R busw busB
32 ALU
e Control
- | —f—
Rtype <¢—{Control [% ALUSEB=10
(O[S I—— FuNC | EE—
Memory q— 6 ALUOp=Add

cs 152 multipath..29 ©DAP & SIK 1995

Ori Execution
° ALU output <- busA or ZeroExt[Imm16]

1 ALUSEA

ALUSelB=11

x: MemtoR
lorD, PCISrgg

PCWr=0 PCWrCond=0

Zero
lorD=x MemWr=0 IRWr=0 RegDst=0 RegWr=0 ALUSEA=1 [1 Target
k< 32
- |32 E \
el 7 x
~
0 /> Ra
2 |= RAdr 5
c ’l - Rb busA|
2t | deal 5 | RegFile
’ Memory 1
32,‘ B WrAdr Rw
/| Din Dout [/ |—> busw busB
32

ALU

Mux ON— l
|L$ <<2 > Control
A
Extend /
I LA
mm e %2 ALUOp=Or
ExtOp=0 MemtoReg=x ALUSelB=11

cs 152 multipath..30 ©DAP & SIK 1995

Ori Completion

° Reg[rt] <- ALU output

x: lorD, PCSrc
ALUSelB=11

1: ALUSEA
PCWr=0 PCWrCond=0 Regwr
Zero

lorD=x MemWr=0 IRWr=0 RegDst=0 RegWr=1 ALUSeA=1 ﬁ 4—3;—@%
| z
c

B 2 A
- [4 x <l
~ 5 >0 LQ R Zero
. <
0 7 Ra c
32 |= RAdr 5 X 32
y - 5 Reg File | 32
[l Memory 0 4—»10 c
/— WrAdr Rw # »|1 2
32 Din Dout|# busw buss| 32 2
2 = 3 | [ALU
T <<?2 g Control
A
Extend 7/
[
™ 16 32 ALUOp=Or
ExtOp=0 MemtoReg=0 ALUSelB=11
cs 152 multipath..31 ©DAP & SIK 1995
Instruction Decode: We have a Memory Access!
° Next Cycle: Memory Address Calculation
PCWr=0 PCWrCond=0
Zero PCSrc=x | Brwr=1

O
lorD=x MemWr=0 IRWr=0 RegDst=x RegWr=0 ALUSeA=0
32
vy
14
732
[~
0 Ra
2 |z RAdr
- Rb busA|
3 olr I deal Reg File
e Memory
F—-| WrAdr |32 Rw »
32_;_, Din Dout busw busB
2

ALU

Beq Control
-—
Riype <g—|Control OP[£ ALUSHB=1
O q— Func <T ALUSelB=10
Memory e ALUOp=Add

cs 152 muIIipth..32I ExtOp=1

©DAP & SIK 1995

Memory Address Calculation

1: ExtO
ALUSePA
ALUSeB=11

° ALU output <- busA + SignExt[Imm16] ALUOp=Add

PCWr=0 PCWrCond=0
Zero

lorD=x MemWr=0 IRWr=0 RegDst=x RegWr=1 ALUSdA=1 [1 Target
- 32 G |
- 7 x
vy
5 0
|12 RAd s'; ™ Ra g
I
§ > Rb busA ’1‘
S |* | deal 5 | RegFile
Memory
e | WA Rw
%2 _4 p|Din Dout[[P buss
32 M — ALU
<<?2 > Control
A
| Extend =
mm %6 32 _
ALUOp=Add
ExtOp=1 MemtoReg=x ALUSeB=11
cs 152 multipath..33 ©DAP & SIK 1995
Memory Access for Store T EXtOpN\SWmem
N0gA

ALUSelB=11
ALUOp=Add
X: PCSrc,RegDst
MemtoReg

° mem[ALU output] <- busB

PCWr=0 PCWrCond=0
Zero

lorD=x MemWr=1 IRWr=0 RegDst=x RegWr=0 ALUSEA=1 [1 Target
- 32 | I A
- L4 <l
/32 0 LQ - Zero
™ VA - <
0 /| Ra c
2 (= RAdr 5 < 32
c > Rb busA S] >
3 el |deal 5 | RegFile | 32 =
e Memory 4—»0
- | \Wr Al Rw P - 2
32 ; 11 >
Din Dout [|—> busw busB| 32
2 ™2 | raco
Mux O\— »|3
& <<2 iy’ Control

Imm Extend -
16 32 ALUOp=Add
ExtOp=1 MemtoReg=x ALUSelB=11

cs 152 multipath..34 ©DAP & SIK 1995

Memory Access for Load

° Mem Dout <- mem[ALU output]

ALUSeB=11

ALUOp=Add

X: MemtoR
PCSrc)

PCWr=0 PCWrCond=0 PCSrc=x = Brwr=0
Zero
lorD=1 MemWr=0 IRWr=0 RegDst=0 RegWr=0 ALUSdA=1 [1 Target
Z 32
- |32 E \
- [4 x <l
5 >0 LQ TR Zero
/I » <
0 7 Ra c
32 RAdr 5 X 32
s | deal 7p|RO busAl o],32
5 Reg File | 32
Memory 0 4—»10 c >
32/ | WrAdr Rw # >[4
> Din Dout |—> buswW busB| 32 >,
% 1 Mux O\— >3 ALU
<<?2 gl Control
| Extend 7
mm 46 32 _
ALUOp=Add
ExtOp=1 MemtoReg=x ALUSeB=11
cs 152 multipath..35 ©DAP & SIK 1995
Write Back for Load
LWwr
: ALUSEA
RegWr, ExtOp
° Reg[rt] <- Mem Dout emtoReg
ALUSelB=11
ALUOp=Add
x: PCSrc
PCWr=0 PCWrCond=0 lorD PCSrc=x Brwr=0

Zero

lorD=x MemWr=0 IRWr=0 RegDst=0 RegWr=0 ALUSdA=1 [1 2 Target
- 32 G \
- [4 x <l
y /32 10 LQ i Zero
/I » <
0 /= Ra c
2 |z RAdr 5 g %2
c 4RO DUl]>
% ol¥ Ideal 5 " | RegFile | 32 -
7 Memory 4 —p]0 >
A P \WrAdr Rw v 1
32 > Din Dout [busw busB| 32 »> 2
32 g ALU
UX O\— »l3
<<?2 = Control
Imm Extend 7
16 32 ALUOp=Add
ExtOp=1 MemtoReg=1 ALUSelB=11

cs 152 multipath..36

©DAP & SIK 1995

Putting it all together: Multiple Cycle Datapath

PCWr PCWrCond PCSrc BrWr
Zero
MemWr IRWr RegDst RegWr ALUSeA 1 Target
Z 32
2 | = A
4 <l
»lo] o
J 32 1 Rs| | z Zero
0 > 7 P Ra c
2 |= RAdr a Rt 5 X 32
2 E | deal 5 ’l > Rb busA ’l >] ')2
y A =3 5 Reg File | 32
A Memory | [R % 0 4—m0 c
—wradr 32 [T = Rw > >l 2
32 > Din Dout A& Rd]< |—> busw busB| 32 o 2
32 > 12 ALU
1 Mux O\— >3
T <<?2 Control
Extend 7
Imm
16 %2 ALUOp
ExtOp MemtoReg ALUSEB
cs 152 multipath..37 ©DAP & SIK 1995
Summary

° Disadvantages of the Singple Cycle Proccessor
* Long cycle time
* Cycle time is too long for all instructions except the Load

° Multiple Cycle Processor:
 Divide the instructions into smaller steps
» Execute each step (instead of the entire instruction) in one cycle

° Do NOT cofuse Multiple Cycle Processor with Multipe Cycle Dealy Path

» Multiple Cycle Processor executes each
instruction in multiple clock cycles

» Multiple Cycle Delay Path: a combinational logic path between two
storage elements that takes more than one clock cycle to complete

° Itis possible (desirable) to build a MC Processor without MCDP:

 Use aregister to save a signal’s value whenever a signal is
generated in one clock cycle and used in another cycle later

cs 152 multipath..38 ©DAP & SIK 1995

Putting it all together: Control State Diagram

Ifetch
Rfetch/Decode
L Pgé’:’/\rl 'CRV‘g ALUOp=Add ALUOp=Sub
X: rCon . -
AdrCal 1: BrWr, ExtOp ALUSelB=01
ALUSeEB=10 x: lorD, Mem2Reg
x: RegDst, PCSrc RegDst, ExtOp
lorD, MemtoReg 1: PCWrCond
ALUSEA

PCSrc

ALUSeB=11
Others: 0s

ALUOp=Add

1: ALUSEIA

ALUSelB=11

x: MemtoR
lorD, PCSrgg

ALUSeB=01
ALUOp=Rtype
x: PCSrc, lorD
MemtoReg
ExtOp

ALUSelB=11
ALUOp=Add

ALUSelB=11
ALUOp=Add
1 PCSrc,RegDst
MemtoReg

OriFinish
ALUOp=0r

x: lorD, PCSrc
ALUSelB=11

1: ALUSElA
RegWr, ExtOp

LWwr
emtoReg
ALUSeB=11 _
ALUOp=Add ALUSHB=01 1 ALUSHA
X: lorD, PCSrc, "'RegWr
ExtOp €

x: PCSrc
lorD

©DAP & SIK 1995

cs 152 multipath..39

Where to get more information?

° Next two lectures:
» Multiple Cycle Controller: Appendix C of your text book.

* Microprogramming: Section 5.5 of your text book.
° D. Patterson, “Microprograming,” Scientific America, March 1983.

° D. Patterson and D. Ditzel, “The Case for the Reduced Instruction Set
Computer,” Computer Architecture News 8, 6 (October 15, 1980)

©DAP & SIK 1995

cs 152 multipath..40

CS152
Computer Architecture and Engineering
Lecture 12: Designing a Multiple Cycle Controller

March 1, 1995

Dave Patterson (patterson@cs) and
Shing Kong (shing.kong@eng.sun.com)

Slides available on http://http.cs.berkeley.edu/~patterson

cs 152 multicontroller..1 ©DAP & SIK 1995

Review of a Multiple Cycle Implementation

° The root of the single cycle processor’s problems:
» The cycle time has to be long enough for the slowest instruction

° Solution:
* Break theinstruction into smaller steps
» Execute each step (instead of the entire instruction) in one cycle
- Cycle time: time it takes to execute the longest step
- Keep all the steps to have similar length
» This is the essence of the multiple cycle processor

° The advantages of the multiple cycle processor:
* Cycle time is much shorter
- Different instructions take different number of cycles to complete
- Load takes five cycles
- Jump only takes three cycles
» Allows a functional unit to be used more than once per instruction

cs 152 multicontroller..2 ©DAP & SIK 1995

Review: Instruction Fetch Cycle, In the Beginning

° Every cycle begins right AFTER the clock tick:
* mem[PC] PC<31:0>+4

b '

/'\?-’4— One*“Logic” Clock Cycle

\4

You are here!
&PCWr:?
o) :‘
1O 2 | Memwr=2 IRWr=?
/ o 32
Clk % RAdr a 4
c 32
Ideal =}
Memory S ALU
=P rade Py Control
32 Dout & ?
e L A ALUop=?
O

cs 152 multicontroller..3 ©DAP & SIK 1995

Review: Instruction Fetch Cycle, The End

° Every cycle ends AT the next clock tick (storage element updates):

* IR <-- mem[PC] PC<31:0> <-- PC<31:0>+4
Gy, | 0
4——— One“Logic’ Clock Cycle =
You are herel
PCWr=1¢
3%
PO 2 |Memwr=0, IRWr=1 ?
* 00
A 2
Clk RAdr 2 4
ud 32
Ideal =}
> |Memory S ALU
—/—>3 WrAdr X Control
Din Dout 8 ?
%4> A ALUOPp = Add
O

Clk

cs 152 multicontroller..4 ©DAP & SIK 1995

Putting it all together: Multiple Cycle Datapath

PCWr PCWrCond PCSrc BrWr
Zero
MemWr IRWr RegDst RegWr ALUSeA 1 p- Target
2 | g A
4 <l
~ 5 - > % LQ N
0 /> Ra c
2 |= RAdr 5 X 32
= | deal R R busal , o],32
x .
y A 5 32
7> Memor =10 Reg File 4 5 c
y < R 2
/— WrAdr P W # »|1
32 > Din Dout[# Rd|< |—> busw busB| 32 o 2
% 1 Mux 0\ o :23 ALU
T <<?2 > Control
Extend /
Imm-4q A ALUOD
ExtOp MemtoReg ALUSEB

cs 152 multicontroller..5

©DAP & SIK 1995

Instruction Fetch Cycle: Overall Picture

Zero

Ifetch

ALUOp=Add
1: PCWr, IRWr
x: PCWrCond

WrAdr
Din Dout

0 =)

2 |= RAdr @
2 |% Ideal &
Memory S

P

&

cs 152 multicontroller..6

busA

busB 32

ALU
Control

ALUSelB=00
- ALUOp=Add

©DAP & SIK 1995

Register Fetch / Instruction Decode (Continue)

° busA <- Reg]rs] ; busB <- Reg|rt] ;

° Target <- PC + SignExt(Imm16)*4

PCWr=0 PCWrCond=0
Zero

MemWr=0 IRWr=0 RegDst=x

lorD=x

Rfetch/Decode
ALUOp=Add
1: BrWr, ExtOp
ALUSelB=10

X: RegDst, PCSrc
lorD, MemtoReg

Others: 0s

PCSrc=x
RegWr=0 ALUSEA=0

BrWwr=1

1
£
32
7 £
1 132
0 Ra
R |z RAdr
c Rb busA
3? - x Ideal Reg File
Memory
—- WrAdr |32 Rw
82 —/—»| Din Dout busW busB
32 ALU
Beg Control
-—
Rtypeg—]Control P < A ~
Ori Func ALUSeIB=10
Memory g— 6 ALUOp=Add
cs 152 muIIicomroIIér..? ExtOp=1 ©DAP & SIK 1995
R-type Execution
RExec ~T1: Regg
° ALU Output <- busA op busB ALUSEA
ALUSelB=01
ALUOp=Rtype
x: PCSrc, lorD
PCWr=0 PCWrCond=0 MR PCSrc=x ~ Brwr=0
Zero
MemWr=0 IRWr=0 RegDst=1 RegWr=0 ALUSeA=1 [1 > Target
| I \
oy

~
I—§->2 0 RAd é - Ra
r
§ /P Rb busA|
3 olr | deal 5 " | RegFile
’ Memory R i
32,‘ P \WrAdr w
Din Dout [|—> busw busB
2

Imm

Extend
16
ExtOp=x

cs 152 multicontroller..8

ALU

<<?2 Control
A
,l
32 ALUOp=Rtype
MemtoReg=x ALUSelB=01

©DAP & SIK 1995

R-type Completion
° R[rd] <- ALU Output

ALUSelB=01

— — : lorD, PCSr
PCWr=0 PCWrCond=0 N OlgxtOp 0

| \
x
~ 5 0 LQ TR Zero
<
0 Ra -
2 |= RAdr X 32
w» 5 | deal p RO busAl , o],32
vl Reg File | 32 c
4 Memory R 4—»10 >
/— WrAdr W # »|1
32 Din Dout busW busB| 32 2
2
32 - 3 ALU
<«<2 Control
A

Extend ‘e
|
mm 16 2 ALUOp=Rtype
EXtOp=x | MemtoReg=0 ALUSelB=01

©DAP & SIK 1995

cs 152 multicontroller..9

Outline of Today’s Lecture

° Recap (5 minutes)

° Review of FSM control (15 minutes)

o

Questions and Administrative Matters (5 minutes)

From Finite State Diagrams to Microprogramming (25 minutes)

o

Break (5 minutes)

o

ABCs of microprogramming (25 minutes)

cs 152 multicontroller..10 ©DAP & SIK 1995

Overview of Next Two Lectures

° Control may be designed using one of several initial representations.
The choice of sequence control, and how logic is represented, can then
be determined independently; the control can then be implemented with
one of several methods using a structured logic technique.

Initial Representation Finite State Diagram Microprogram

/

Sequencing Control Explicit Next State | |Microprogram countetr
Function + Dispatch ROMs

I

Logic Representation Logic Equations Truth Tables

\/
i

Implementation Technique M

“hardwired control”

cs 152 multicontroller..11 ©DAP & SIK 1995

Initial Representation: Finite State Diagram
O Ifetch

8 BrComplete
ALUOp=Sub
ALUSelB=01

x: lorD, Mem2Reg
RegDst, ExtOp

1: PCWrCond
ALUSEA
PCSrc

10_ .
OriExec

ALUOp=0r
1: ALUSEA

ALUSelB=11

1 Rfetch/Decode

ALUOp=Add
1: BrWr, ExtOp
ALUSelB=10

X: RegDst, PCSrc
lorD, MemtoReg

Others: 0s

ALUOp=Add
1: PCWr, IRWr

x: PCWrCond
RegDst, Mem2R

2 AdrCal

1: ExtO
ALUSEA

ALUSeIB=11
ALUOp=Add

ALUSeB=01

ALUOp=Rtype
x: PCSrc, lorD
MemtoReg
ExtOp

ALUSelB=11
ALUOp=Add

ALUSelB=11
ALUOp=Add
. PCSrc,RegDst
MemtoReg

1:
4 LWwr Wr, ExtOp
emtoReg x: lorD, PCSrc
ALUSelB=11 _ ALUSelB=11
ALUOp=Add ALUSAB-01 1: ALUSHA

x: lorD, PCSrc
ExtO Regwr

x: PCSrc
lorD

cs 152 multicontroller..12 ©DAP & SIK 1995

Sequencing Control: Explicit Next State Function

Control Logic (u)
t Multicycle
p Datapath
u
t
Inputs s
A A A A A A A A
Opcode State Reg
A A t
° Next state number is encoded just like datapath controls
cs 152 multicontroller..13 ODAP & SIK 1995
Logic Representative: Logic Equations
°Alternatively, N
° Next state from current state prior state & condition
« State 0 -> Statel S4, S5, S7, S8, S9, S11 -> State0
» State 1 -> S2, S6, S8, S10 -> State 1
» State 2 -> -> State 2
» State 3 -> -> State 3
» State 4 ->State 0 -> State 4
+ State 5 -> State 0 State2 & op =sw -> State 5
» State 6 -> State 7 -> State 6
e State 7 -> State 0 State 6 -> State 7
» State 8 -> State 0 -> State 8
« State 9-> State 0 State2 & op = jmp -> State 9
» State 10 -> State 11 -> State 10
e State 11 -> State 0 State 10 -> State 11

cs 152 multicontroller..14 ©DAP & SIK 1995

Implementation Technique: Programmed Logic Arrays

° Each output line the logical OR of logical AND of input lines or their
complement: AND minterms specified in top AND plane, OR sums
specified in bottom OR plane

Ops> T, R= 000000
Op4 ", beq = 000100
Op3 [lw= 100011
Op2 Lpo sw= 101011
Opl Lpo ori = 001011
Op0 _ Lpo jmp =000010
S3 Lo =
Sy Lpo =
s1 L>—
0 LDo——¢
0=0000 6=0110
1=0001 7=0111 NS3
2=0010 8= 1000 NS2
3 = OOll 9 = 1001 NS].
-oene- oot} =

cs 152 multicontroller..15 ©DAP & SIK 1995

Questions and Administrative Matters

° Apologize for problems with the franklin.cs
* Lessons learned for your career?

° “Midterm” for instructors and TAs: constructive criticism by Friday
» Please put your name, as | want to hear from everyone
« If you want to submit an anonymous form, just take a second copy
» Be careful what you wish for, it may come true

- this semester we switched to the faster HP workstations
(which is the cause of the instability) and doubled the number
of Powerview licenses and disk space per group

» Return in class Friday, right after 5 minute break
° Email progress reports 4PM Friday
° Assume reasonable dealys for modules for next assignment

° Go to discussion section so that you can meet with your group!!!

cs 152 multicontroller..16 ©DAP & SIK 1995

Implementation Technique: Programmed Logic Arrays

° Each output line the logical OR of logical AND of input lines or their

complement: AND minterms specified in top AND plane, OR sums
specified in bottom OR plane

Op5 100011
Op4 = = —r 101011
Op3 T T 000000
Oy R i e— ori = 001011
Opl " Tpe beq = 000100
Op0 "o ’ jmp =000010
3
2
2o s hEietd
0 LD—
0=0000 6=0110
1=0001 7= 0111 NS3
2=0010 8= 1000 N2
3=0011 9= 1001 r_T_H NS
4= 010010 = 1010 NSO

5=010111=1011

cs 152 multicontroller..17

Multicycle Control

o

o

o

o

° What if need to add a state?

cs 152 multicontroller..18

Can implement easily using PLA

What if many more states, many more conditions?

©DAP & SIK 1995

Given numbers of FSM, can turn determine next state as function of
inputs, including current state

Turn these into Boolean equations for each bit of the next state lines

©DAP & SIK 1995

Next Iteration: Using Sequencer for Next State

° Before Explicit Next State: Next try variation 1 step from right hand side

° Few sequential states in small FSM: suppose added floating point?

° Still need to go to non-sequential states: e.g., state1=>2,6, 8, 10

Initial Representation

Sequencing Control

Logic Representation

Implementation Technique

cs 152 multicontroller..19

Finite State Diagram

/
A

Explicit Next State
Function

\

Logic Equations

\
A

Microprogram

Microprogram counter
+ Dispatch ROMs

Truth Tables

“hardwired control”

Sequencer-based control unit

[—

Control Logic

Outputs

Inputs

©DAP & SIK 1995

Multicycle

Datapath

}

Y
N

State Reg

Addr ess Select Logic 4

A

cs 152 multicontroller..20

Opcode

Types of “branching”

* Set stateto O

* Digpatch (state 1 & 2)

» Useincremented state
number

©DAP & SIK 1995

Sequencer-based control unit details

Control Logic

| Inputs Dispatch ROM 1
L A Op Name State
¢ 000000 Rtype 0110
N~ State Reg 000010 jmp 1001
\Adder 000100 beq 1000
001011 ori 1010
(32Mux1 o)</ |100011 Iw 0010
XN 101011 sw 0010
0
Adsdéesf ROM2|[ROM1 Dispaich ROM 2
e Op Name State
L ogic t 1 100011 |lw 0011
101011 sw 0101
Opcode

cs 152 multicontroller..21

©DAP & SIK 1995

Implementing Control with a ROM

° Instead of a PLA, use a ROM with one word per state (“Control word")

State number

P
RBoo~NouhrwnhRO

cs 152 multicontroller..22

Control Word Bits 18-2

10010100000001000
00000000010011000
00000000000010100
00110000000010100
00110010000010110
00101000000010100
00000000001000100
00000000001000111
01000000100100100
10000001000000000

Control Word Bits 1-0

©DAP & SIK 1995

Next Iteration: Using Microprogram for Representation

Initial Representation Finite State Diagram Microprogram

/
A

Sequencing Control Explicit Next State | Microprogram counter
Function + Dispatch ROMs

/

Logic Representation Logic Equations Truth Tables

\/
i

Implementation Technique M

“hardwired control”

° ROM can be thought of as a sequence of control words
° Control word can be thought of as instruction: “microinstruction”

° Rather than program in binary, use assembly language

cs 152 multicontroller..23 ©DAP & SIK 1995

Break (5 Minutes)

cs 152 multicontroller..24 ©DAP & SIK 1995

Microprogramming

° Control is the hard part of processor design
° Datapath is fairly regular and well-organized

° Memory is highly regular
° Control is irregular and global

Microprogramming:

-- A Particular Strategy for Implementing the Control Unit of a
processor by "programming" at the level of register transfer

operations

Microarchitecture:

-- Logical structure and functional capabilities of the hardware as

seen by the microprogrammer

Historical Note:

IBM 360 Series first to distinguish between architecture & organization
Same instruction set across wide range of implementations, each with

different cost/performance

cs 152 multicontroller..25

Macroinstruction Interpretation

_———
Main ADD
Memory SUB
\ AND
1 DATA
\
execution

unit

control
memory

CPU

cs 152 multicontroller..26

©DAP & SIK 1995

User program
plus Data

this can change!

one of these is
mapped into one
of these

AND microsequence

e.g., Fetch
Calc Operand Addr
Fetch Operand(s)
Calculate
Save Answer(s)

©DAP & SIK 1995

Variations on Microprogramming

° Horizontal Microcode

—control field for each control point in the machine
|useq |uaddr |A-mux |B-mux | bus enables |register enables| |

° Vertical Microcode

— compact microinstruction format for each class of microoperation

branch: useq-op padd

execute: ALU-op A,B,R

memory: mem-op S, D

Horizontal
Vertical
cs 152 multicontroller..27 ©DAP & SIK 1995
Extreme Horizontal
3 1

mput
N3|N2INL[NO| qoject

1 bit for each loadable register ¢ Incr PC

enbMAR
enbAC ALU control

Depending on bus organization, many potential control combinations
simply not wrong, i.e., implies transfers that can never happen at
the same time.

Makes sense to encode fields to save ROM space

Example: gate Rx and gate Ry to same bus should never happen
encoded in single bit which is decoded rather than two separate bits

NOTE: encoding should be just sufficient that parallel actions that the
datapath supports should still be specifiable in a single microinstruction

cs 152 multicontroller..28 ©DAP & SIK 1995

Microprogramming (example)

°use of ROM/RAM to generate control points rather than through
discrete logic
°including control of the next-state logic (the microsequencer)

Horizontal Microprogramming
1 column in the control ROM for each control line in the datapath

<—2N Sequencer —»

ab|ablab|ab|. s|. s
Reg Xfer a abja a I el! el ROM
other ALU DD 1| Adar
control mode 5 e 5 e |
outputs 1 gt | src t tc t tc
A0 | Al | A2 | A3
+ *LLL 4:1 MUX MUX
’/
enable MUX
to be Y,
loaded ' <_rea/dy
from
gateACtoBus ac<15>
bus gatePCtoBus - MUX [5hcodet
L l<@— opcode2
cs 152 multicontroller..29 DAP & SIK.1995

More Vertical Format

|src | dst| other control fields | next states | inputs |

IIIDI IR==gi [T 1 -~
D
E E B MUX [
C L C - PC <-PC +1 l—
Some of these may have
nothing to do with registers!
Multiformat Microcode:
1 3 6
|0|cond |next address | Branch Jump
1 3 3 3
|1| dst | src alu | Register Xfer Operation
[1
D b | D b
E™ | E™
Clp | C |

cs 152 multicontroller..30 ©DAP & SIK 1995

Controller Implementation

MIR| |

|<_

IR
reg xfer

=00

Y

enb

11
ALU Op

Ox
Branch

cs 152 multicontroller

Hierarchy of States

—|d A - gatelR
—1d B s —» gatePC
R |
C .
— I_>enb —
B_|
|

clk

from rest of microword,
perhaps concatenated
or passed thru the ALU
(PC relative)

©DAP & SIK 1995

Not all critical control information is derived from control logic

E.g., IR contains useful control information, such as register sources,
destinations, opcodes, etc.

enable '

signals
from
control

IR |op |rsl|r32| rd

to

control

cs 152 multicontroller..32

;v
R|R|[R >
S|S|D
112 Register
oplbolp File
E|E|E
c|C]|C >
A A A

©DAP & SIK 1995

Horizontal vs. Vertical Microprogramming
NOTE: previous organization is not TRUE horizontal microprogramming;

register decoders give flavor of encoded microoperations
Most microprogramming-based controllers vary between:
horizontal organization (1 control bit per control point)

vertical organization (fields encoded in the control memory and
must be decoded to control something)

Horizontal Vertical
+ more control over the potential + easier to program, not very
parallelism of operations in the different from programming
datapath a RISC machine in assembly
language

- uses up lots of control store)
- extralevel of decoding may
slow the machine down

cs 152 multicontroller..33 ©DAP & SIK 1995

Vax Microinstructions

VAX Microarchitecture:

96 bit control store, 30 fields, 4096 pinstructions for VAX ISA
encodes concurrently executable "microoperations”

95 87 84 68 65 63 110
| | USHF | | uALU| usuB| | uamp|

00 = Nop |
01 = CALL Jump
10 =RTN Address

Subroutine
Control

001 = left 010 =A-B-1
010 =right 100 = A+B+1

. ALU
101 = left3 Control

ALU Shifter
Control

cs 152 multicontroller..34 ©DAP & SIK 1995

Legacy Software and Microprogramming

° IBM bet company on 360 Instruciton Set Architecture (ISA):
single instruction set for many classes of machines (8-bit to 64-bit)

° Stewart Tucker stuck with job of what to do about software
compatability

[

If microprogramming could easily do same instruction set on many
different microarchitectures, then why couldn’t multiple microprograms
do multiple instruction sets on the same microarchitecture?

° Coined term “emulation”: instruction set interpreter in microcode for
non-native instruction set

° Very successful: in early years of IBM 360 it was hard to know whether
old instruction set or new instruction set was more frequently used

cs 152 multicontroller..35 ©DAP & SIK 1995

Microprogramming Pros and Cons

° Ease of design

o

Flexibility
» Easy to adapt to changes in organization, timing, technology
» Can make changes late in design cycle, or even in the field

° Can implement very powerful instruction sets (just more control
memory)

[

Generality
» Can implement multiple instruction sets on same machine.
 Can tailor instruction set to application.

o

Compatibility
* Many organizations, same instruction set

° Costly to implement

° Slow

cs 152 multicontroller..36 ©DAP & SIK 1995

Microprogramming one inspiration for RISC

° If simple instruction could execute at very high clock rate...

o

If you could even write compilers to produce microinstructions...

° If most programs use simple instructions and addressing modes...

o

If microcode is kept in RAM instead of ROM so as to fix bugs ...

° If same memory used for control memory could be used instead as
cache for “macroinstructions” ...

° Then why not skip instruction interpretation by a microprogram and
simply compile directly into lowest language of machine?

cs 152 multicontroller..37 ©DAP & SIK 1995

Summary: Multicycle Control

° Microprogramming and hardwired control have many similarities,
perhaps biggest difference is initial representation and ease of change
of implementation, with ROM generally being easier than PLA

Initial Representation Finite State Diagram Microprogram

/
\

Sequencing Control Explicit Next State | |Microprogram countet
Function + Dispatch ROMs

I

Logic Representation Logic Equations Truth Tables

\/
A

Implementation Technique M

“hardwired control”

cs 152 multicontroller..38 ©DAP & SIK 1995

CS152
Computer Architecture and Engineering
Lecture 13: Microprogramming and Exceptions

March 3, 1995

Dave Patterson (patterson@cs) and
Shing Kong (shing.kong@eng.sun.com)

Slides available on http://http.cs.berkeley.edu/~patterson

cs 152 pprog..1 ©DAP & SIK 1995

Review of a Multiple Cycle Implementation

° The root of the single cycle processor’s problems:
» The cycle time has to be long enough for the slowest instruction

° Solution:
* Break theinstruction into smaller steps
» Execute each step (instead of the entire instruction) in one cycle
- Cycle time: time it takes to execute the longest step
- Keep all the steps to have similar length
» This is the essence of the multiple cycle processor

° The advantages of the multiple cycle processor:
* Cycle time is much shorter
- Different instructions take different number of cycles to complete
- Load takes five cycles
- Jump only takes three cycles
» Allows a functional unit to be used more than once per instruction

cs 152 pprog..2 ©DAP & SIK 1995

Review: Multiple Cycle Datapath

cs 152 pprog..3

PCWr PCWrCond PCSrc BrWr
Zero
MemWr IRWr RegDst RegWr ALUSeA 1 Target
Z 32
2 | = A
4 <l
y - -
732 Rs o % LQ Zero
0 =1 /— Ra
7 c
2 |= RAdr a Rt 5 X 32
2 E | deal 5 /> Rb busA F—] ')2
y A =3 5 Reg File | 32
[l Memory S Rt % € 4 —»10 c -
— Wradr ~ |32 |3 = Rw > >l
32 > Din Dout A& Rd]< |—> busw busB| 32 o 2
32 > 12 ALU
1 Mux O\— >3
T <<?2 Control
Extend 7
Imm
16 32 ALUOp
ExtOp MemtoReg ALUSEB

Overview of the Two Lectures

©DAP & SIK 1995

° Control may be designed using one of several initial representations.
The choice of sequence control, and how logic is represented, can then
be determined independently; the control can then be implemented with
one of several methods using a structured logic technique.

Initial Representation

Sequencing Control

Logic Representation

Implementation Technique

cs 152 pprog..4

Finite State Diagram

/
\

Explicit Next State
Function

I

Logic Equations

\/
A

“hardwired control”

Microprogram

Microprogram counter

+ Dispatch ROMs

Truth Tables

M

©DAP & SIK 1995

Initial Representation: Finite State Diagram
O Ifetch

1 Rfetch/Decode
ALUOp=Add

ALUOp=Add
1: PCWr, IRWr
x: PCWrCond

8 BrComplete
ALUOp=Sub

2 Adrcal 1: BrWr, ExtOp ALUSelB=01
ALUSeEB=10 x: lorD, Mem2Reg
x: RegDst, PCSrc RegDst, ExtOp

ALUSeIB=11
ALUOp=Add

lorD, MemtoReg

1: PCWrCond
Others: 0s ALUSEA

PCSrc

OriExec
ALUOp=Or
1: ALUSEA

ALUSelB=11

x: MemtoR
lorD, PCSrceg

ALUSeB=01
ALUOp=Rtype
X: PCSrc,RIorD

ALUSelB=11
ALUOp=Add

ALUSelB=11
ALUOp=Add
1 PCSrc,RegDst
MemtoReg

1: ALUSElA

4 LWwr /' RegWr, ExtOp
emtoReg x: lorD, PCSrc
ALUSeB=11 _ ALUSeB=11
ALUOp=Add ALUSAB-O1 1: ALUSEA
x: PCSrc

RegWr

x: lorD, PCSrc,
1orD ExtOp

cs 152 pprog..5 ©DAP & SIK 1995

Sequencing Control: Explicit Next State Function

Control Logic (u)
t Multicycle
p Datapath
u
t
Inputs s
I YY YN Y
Opcode State Reg

° Next state number is encoded just like datapath controls

cs 152 pprog..6 ©DAP & SIK 1995

Implementation Technique: Programmed Logic Arrays

° Each output line the logical OR of logical AND of input lines or their
complement: AND minterms specified in top AND plane, OR sums
specified in bottom OR plane

Op5 e L S " S S lw= 100011
Op4 LDO__‘_*_*_*_‘_*_‘_* sw = 101011
Op3 ™ Lo 7% R= 000000
Op2 Lpo— ori = 001011
Opl i - beq = 000100
Op0 o L S i ——— jmp =000010
3
2
0 “Do——¢ ?
0=0000 6= 0110
1=0001 7= 0111 b4 NS3
2=0010 8= 1000 NS2
3=0011 9= 1001 T_T_H NSL
5=010111 = 1011

cs 152 pprog..7

Sequencer-based control unit details

©DAP & SIK 1995

Control Logic

| Inputs Dispatch ROM 1
1 \ Op Name State
' i 000000 Rtype 0110
\Addef / 000100 beq 1000
001011 ori 1010
(_32Mux1 o)=| |100011 Iw 0010
X A A 101011 sw 0010

0

Adsderlesf ROM21 [ROM1 Dispaich ROM 2
€c Op Name State
L ogic *ﬁ# 100011 lw 0011
101011 sw 0101

cs 152 pprog..8

Opcode

©DAP & SIK 1995

Implementing Control with a ROM

° Instead of a PLA, use a ROM with one word per state (“Control word")

State number

P
RBoo~NouhrwhRO

cs 152 pprog..9

Control Word Bits 18-2

10010100000001000
00000000010011000
00000000000010100
00110000000010100
00110010000010110
00101000000010100
00000000001000100
00000000001000111
01000000100100100
10000001000000000

Macroinstruction Interpretation

Control Word Bits 1-0

©DAP & SIK 1995

User program

plus Data

this can change!

one of these is

mapped into one
of these

|_———
Main ADD
Memory SUB
\ AND
1 DATA
\
execution
unit
CPU control
memory

cs 152 pprog..10

AND microsequence

e.g., Fetch

Calc Operand Addr
Fetch Operand(s)
Calculate

Save Answer(s)

©DAP & SIK 1995

Variations on Microprogramming

° Horizontal Microcode

—control field for each control point in the machine

|useq |uaddr |A-mux |B-mux | bus enables |register enables| |

° Vertical Microcode

— compact microinstruction format for each class of microoperation

branch: useq-op padd
execute: ALU-op A,B,R
memory: mem-op S, D
cs 152 pprog..11 ©DAP & SIK 1995

Microprogramming Pros and Cons

° Ease of design

° Flexibility
» Easy to adapt to changes in organization, timing, technology
» Can make changes late in design cycle, or even in the field

° Can implement very powerful instruction sets (just more control
memory)

° Generality

» Can implement multiple instruction sets on same machine.
(Emulation)

 Can tailor instruction set to application.

° Compatibility
* Many organizations, same instruction set

° Costly to implement

° Slow

cs 152 pprog..12 ©DAP & SIK 1995

o

o

o

o

o

o

Outline of Today’s Lecture

Recap (5 minutes)

Microinstruction Format Example (15 minutes)
Questions and Administrative Matters (5 minutes)
Do-it-yourself Microprogramming (25 minutes)
Break (5 minutes)

Exceptions (25 minutes)

cs 152 pprog..13 ©DAP & SIK 1995

o

o

Designing a Microinstruction Set

Start with list of control signals
Group signals together that make sense: called “fields”

Places fields in some logical order (ALU operation & ALU operands first
and microinstruction sequencing last)

Create a symbolic legend for the microinstruction format, showing
name of field values and how they set the control signals

To minimize the width, encode operations that will never be used at the
same time

cs 152 pprog..14 ©DAP & SIK 1995

Start with list of control signals, grouped into fields

Signal name Effect when deasserted Effect when asserted

ALUSelA 1st ALU operand = PC 1st ALU operand = Req]rs]
RegWrite None Reg. is written
MemtoReg Reg. write data input = ALU Reg. write data input = memory
RegDst Reg. dest. no. = rt Reg. dest. no. = rd
TargetWrite None Target reg. = ALU
MemRead None Memory at address is read
MemWrite None Memory at address is written
lorD Memory address = PC Memory address = ALU
IRWrite None IR = Memory
PCWrite None PC = PCSource
PCWriteCond None IF ALUzero then PC = PCSource
Signal name Value Effect
ALUOp 00 ALU adds
01 ALU subtracts
10 ALU does function code
11 ALU does logical OR

ALUSelB 000 2nd ALU input = Reg[rt]
001 2nd ALU input =4
010 2nd ALU input = sign extended IR[15-0]
011 2nd ALU input = sign extended, shift left 2 IR[15-0]
100 2nd ALU input = zero extended IR[15-0]

PCSource 00 PC=ALU
01 PC = Target
cs 152 pprog..15 10 PC = PC+4[29'26] : |R[25—0] << 2 ©DAP & SIK 1995

Start with list of control signals, cont’d

° For next state function (next microinstruction address),
use Sequencer-based control unit from last lecture

Signal Value Effect | I—
Sequen 00 Next paddress =0 1

1
-cing 01 Next paddress =dispatch ROM 1
10 Next paddress = dispatch ROM 2 * Y

11 Next paddress = paddress +1 \@6—3'/ [State Reg |

32Mux
YU W)
0
Address| ROMZROMT]
Select

Logic

cs 152 pprog..16 ©DAP & SIK 1995

Microinstruction Format

Field Name Width Control Signals Set

ALU Control 2 ALUOp

SRC1 1 ALUSelA

SRC2 3 ALUSelB

ALU Destination 4 RegWrite, MemtoReg, RegDst, TargetWrite
Memory 3 MemRead, MemWrite, lorD

Memory Register 1 IRWrite

PCWrite Control 4 PCWrite, PCWriteCond, PCSource
Sequencing 2 AddrCtl

Total 20

cs 152 pprog..17

©DAP & SIK 1995

Legend of Fields and Symbolic Names
Values for Field Function of Field with Specific Value

Field Name
ALU

SRC1
SRC2

ALU destination

Memory

Memory register

PC write

Sequencing

cs 152 pprog..18

Add

Func code
Subt.

Or

PC

rs

4

Extend
ExtendO
Extshft

rt

Target

rd

Read PC
Read ALU
Write ALU
IR

Write rt
Read rt
ALU

Target-cond.

jump addr.
Seq

Fetch
Dispatch i

ALU adds

ALU subtracts

ALU does function code

ALU does logical OR

1st ALU input = PC

1st ALU input = Reg|rs]

2nd ALU input =4

2nd ALU input = sign ext. IR[15-0
2nd ALU input = zero ext. IR[15-0]
2nd ALU input = sign ex., sl IR[15-0]
2nd ALU input = Reg[rt]

Target = ALU

Reg[rd] = ALU

Read memory using PC

Read memory using ALU output
Write memory using ALU output
IR = Mem

Reg(rt] = Mem

Mem = Reg(rt]

PC = ALU output

IF ALU Zero then PC = Target

PC = PCSource

Go to sequential pinstruction

Go to the first microinstruction
Dispatch using ROMi (1 or 2).¢pap & sik 1095

Microprogram it yourself!

Label ALU SRC1 SRC2 ALU Dest. Memory Mem. Reg. PC Write Sequencing

Fetch Add PC 4 Read PC IR ALU Seq

cs 152 pprog..19 ©DAP & SIK 1995

Questions and Administrative Matters

° “Midterm” for instructors and TAs: constructive criticism by Friday
* Please put your name, as | want to hear from everyone
« If you want to submit an anonymous form, just take a second copy
» Be careful what you wish for, it may come true

» Return in class today, right after 5 minute break (take another if
don’t have one)

° Lecture next Wednesday March 8 is moved from 306 Sodato ??
because of a conference that day

° Lab 4 progress report in discussion section March 8-10; project also
due in discussion sections March 15 to 17; everyone needs to be there
for both meetings

° Read the course newsgroup to keep uptodate on latest news

cs 152 pprog..20 ©DAP & SIK 1995

Break (5 Minutes)

° Turn in class surveys!

cs 152 pprog..22 ©DAP & SIK 1995

Exceptions and Interrupts

° Control is hardest part of the design

° Hardest part of control is exceptions and interrupts

» events other than branches or jumps that change the normal flow
of instruction execution

» exception is an unexpected event from within the processor;
e.g., arithmetic overflow

* interrupt is an unexpected event from outside the processor;
eg., /0

° MIPS convention: exception means any unexpected change in control
flow, without distinguishing internal or external;
use the term interrupt only when the event is externally caused.

Type of event From where? MIPS terminology
I/O device request External Interrupt
Invoke OS from user program Internal Exception
Arithmetic overflow Internal Exception
Using an undefined instruction Internal Exception
Hardware malfunctions Either Exception or Interrupt

cs 152 pprog..23 ©DAP & SIK 1995

How are Exceptions Handled?

° Machine must save the address of the offending instruction in the EPC
(exception program counter)

° Then transfer control to the OS at some specified address
» OS performs some action in response, then terminates or returns
using EPC

° 2 types of exceptions in our current implementation:
undefined instruction and an arithmetic overflow

° Which Event caused Exception?
» Option 1 (used by MIPS): a Cause register contains reason
» Option 2 Vectored interrupts: address determines cause.
- addresses separated by 32 instructions
- Eg.,
Exception Type Exception Vector Address (in Binary)

Undefined instruction 01000000 00000000 00000000 00000000,
Arithmetic overflow 01000000 00000000 00000000 01000000,

cs 152 pprog..24 ©DAP & SIK 1995

Additions to MIPS ISA to support Exceptions

° EPC—a 32-bit register used to hold the address of the affected
instruction.

° Cause-aregister used to record the cause of the exception. In the MIPS
architecture this register is 32 bits, though some bits are currently
unused. Assume that the low-order bit of this register encodes the two
possible exception sources mentioned above: undefined instruction=0
and arithmetic overflow=1.

[

2 control signals to write EPC and Cause

° Be able to write exception address into PC, increase mux to add as
input 01000000 00000000 00000000 00000000wo

° May have to undo PC = PC + 4, since want EPC to point to offending
instruction (not its successor); PC=PC-4

cs 152 pprog..25 ©DAP & SIK 1995

How Control Detects Exceptions

° Undefined Instruction—detected when no next state is defined from state
1 for the op value.
* We handle this exception by defining the next state value for all op
values other than Iw, sw, 0 (R-type), jmp, beq, and ori as new state
12.

» Shown symbolically using “other” to indicate that the op field does
not match any of the opcodes that label arcs out of state 1.

° Arithmetic overflow—Chapter 4 included logic in the ALU to detect
overflow, and a signal called Overflow is provided as an output from the
ALU. This signal is used in the modified finite state machine to specify
an additional possible next state for state 7

° Note: Challenge in designing control of a real machine is to handle
different interactions between instructions and other exception-causing
events such that control logic remains small and fast.

» Complex interactions makes the control unit the most challenging
aspect of hardware design

cs 152 uprog..26 ©DAP & SIK 1995

Changes to Finite State Diagram to Detect Exceptions

8 BrComplete

1 Rfetch/Decode

1 .PCWr, IRWr ALUOp=Ad0 ALUOp=Sub
2 Adrcal Rxég %%W{AcﬁgR 1: BrWr, ExtOp ALUSelB=01

x: lorD, Mem2Reg
RegDst, ExtOp
1: PCWrCond

ALUSEA
PCSrc

ALUSelB=10

X: RegDst, PCSrc
lorD, MemtoReg

Others: 0s

ALUSeIB=11
ALUOp=Add

OriExec

ALUOp=0r
1: ALUSEA

ALUSelB=11

ALUSeB=01

ALUOp=Rtype
x: PCSrc, lorD
MemtoReg
ExtOp

ALUSelB=11
ALUOp=Add

ALUSelB=11
ALUOp=Add
. PCSrc,RegDst
MemtoReg

1]OriFinish

x: lorD, PCSrc
ALUSelB=11

1: ALUSEA
RegWr

ALUSelB=11
ALUOp=Add

x: PCSrc
lorD

cs 152 pprog..27 ©DAP & SIK 1995

Extra States to Handle Exceptions

1: PCWr, IRWr

x: PCWrCond
RegDst, Mem2R

ALUOp=Add
1: BrWr, ExtOp
ALUSelB=10

x: RegDst, PCSrc -
lorD, MemtoReg lw or sw

1: EPCWrite
0: ALUSelA
ALUSelB=01
ALUOp=Sub
x: MemtoReg
PCsrc,...

ALUSelB=01
ALUOp=Rtype
x: PCSrc, lorD
MemtoReg
ExtOp

x: RegDst, PCSrc
ALUOp, ALUSeB
lorD, MemtoReg

Others: Os

1: PCWr
PCSrc=11
X: RegDst,
ALUOp, ALUSEIB
lorD, MemtoReg

Others: Os

15 PCex

cs 152 pprog..28 ©DAP & SIK 1995

What happens to Instruction with Exception?

Some problems could occur in the way the exceptions are handled.

o

For example, in the case of arithmetic overflow, the instruction causing
the overflow completes writing its result, because the overflow branch
is in the state when the write completes.

However, the architecture may define the instruction as having no effect
if the instruction causes an exception; MIPS specifies this.

[

When get to virtual memory we will see that certain classes of
exceptions prevent the instruction from changing the machine state.

o

This aspect of handling exceptions becomes complex and potentially
limits performance.

cs 152 pprog..29 ©DAP & SIK 1995

Summary

° Control is hard part of computer design

o

Microprogramming specifies control like assembly language
programming instead of finite state diagram

[

Next State function, Logic representation, and implementation
technique can be the same as finite state diagram, and vice versa

° Exceptions are the hard part of control

° Need to find convenient place to detect exceptions and to branch to
state or microinstruction that saves PC and invokes the operating
system

° As we get pipelined CPUs that support page faults on memory accesses
which means that the instruction cannot complete AND you must be
able to restart the program at exactly the instruction with the exception,
it gets even harder

cs 152 pprog..30 ©DAP & SIK 1995

