
cs 152 Intro.1 ©DAP & SIK 1995

CS152
Computer Architecture and Engineering

Lecture 1

January 18, 1995

Dave Patterson & Shing Kong

cs 152 Intro.2 ©DAP & SIK 1995

Overview of Today’s Lecture

° Course Overview (20 minutes: Dave Patterson)

° Administrative Matters (3 minutes: DP)

° Course Philosophy and Structure (10 min: DP)

° Level of Representation (15 min: DP)

° Break (5 min)

° Levels of Organization (25 min: Kong)

cs 152 Intro.3 ©DAP & SIK 1995

CS152: Course Overview

Computer Design

Instruction Set Deign
° Machine Language

° Compiler View

° "Computer Architecture"

° "Instruction Set Processor"

"Building Architect"

Computer Hardware Design

° Machine Implementation

° Logic Designer's View

° "Processor Architecture"

° "Computer Organization"

"Construction Engineer"

cs 152 Intro.4 ©DAP & SIK 1995

Instruction Set Architecture

. . . the attributes of a [computing] system as seen by the
programmer, i.e. the conceptual structure and functional
behavior, as distinct from the organization of the data
flows and controls the logic design, and the physical
implementation.

 Amdahl, Blaaw, and Brooks, 1964

SOFTWARESOFTWARE
-- Organization of Programmable
 Storage

-- Data Types & Data Structures:
 Encodings & Representations

-- Instruction Formats

-- Instruction (or Operation Code) Set

-- Modes of Addressing and Accessing Data Items and Instructions

-- Exceptional Conditions

cs 152 Intro.5 ©DAP & SIK 1995

Organization

Logic Designer's View

ISA Level

FUs & Interconnect

-- Capabilities & Performance Characteristics of Principal
Functional Units

(e.g., Registers, ALU, Shifters, Logic Units, etc.

-- Ways in which these components are interconnected

-- nature of information flows between components

-- logic and means by which

 such information flow is controlled.

Choreography of FUs to realize the ISA

Register Transfer Level Description

cs 152 Intro.6 ©DAP & SIK 1995

What is "Computer Architecture"

° Co-ordination of levels of abstraction

I/O systemInstr. Set Proc.

Compiler
Operating

System

Application

Digital Design

Circuit Design

° Under a set of rapidly changing Forces

Instruction Set
 Architecture

cs 152 Intro.7 ©DAP & SIK 1995

Forces on Computer Architecture

Computer
Architecture

Technology
Programming
Languages

Operating
Systems

History

Applications

(A = F / M)

cs 152 Intro.8 ©DAP & SIK 1995

Technology: Microprocessor Logic Density

1 0 0 0

1 0 0 0 0

1 0 0 0 0 0

1000000

10000000

1 9 7 0 1 9 7 5 1 9 8 0 1 9 8 5 1 9 9 0 1 9 9 5 2 0 0 0

r 4 4 0 0

r 3 0 1 0

i80486

i80386

i80286

i8086

i8080
i8008

i4004

Memory: 4x every 3 years

cs 152 Intro.9 ©DAP & SIK 1995

Performance Trends

Year

P
e

rf
o

rm
a

n
c

e

0.1

1

1 0

1 0 0

1 0 0 0

1 9 6 5 1 9 7 0 1 9 7 5 1 9 8 0 1 9 8 5 1 9 9 0 1 9 9 5 2 0 0 0

Microprocessors

Minicomputers

Mainframes

Supercomputers

cs 152 Intro.10 ©DAP & SIK 1995

CPU and LAN Performance

Year

Relative
Performance

1000

 100

 10

 1
1980 1985 1990 1995 2000

100 Mb FDDI

10 Mb

1 Gb ATM

MIPS
M/120

DEC
Alpha

CPU
(spec)

LAN

cs 152 Intro.11 ©DAP & SIK 1995

Levels of Representation

High Level Language
Program

Assembly Language
Program

Machine Language
Program

Control Signal Spec

Compiler

Assembler

Machine Interpretation

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

cs 152 Intro.12 ©DAP & SIK 1995

MIPS R3000 Instruction Set Architecture

° Instruction Categories

• Load/Store

• Computational

• Jump and Branch

• Floating Point

- coprocessor

• Memory Management

• Special

R0 - R31

PC
HI
LO

OP

OP

OP

rs rt rd sa funct

rs rt immediate

target

Instruction Format

cs 152 Intro.13 ©DAP & SIK 1995

Measurement and Evaluation

Design

AAnnaallyyssiiss

Architecture is an iterative process
 -- searching the space of possible designs
 -- at all levels of computer systems

Creativity

Good IdeasGood Ideas

Mediocre Ideas
Bad Ideas

Cost /
Performance
Analysis

cs 152 Intro.14 ©DAP & SIK 1995

CS152: Course Overview (cont)

Computer Design

Instruction Set Deign
° Machine Language

° Compiler View

° "Computer Architecture"

° "Instruction Set Processor"

"Building Architect"

Computer Hardware Design
° Machine Implementation\

° Logic Designer's View

° "Processor Architecture"

° "Computer Organization"

Construction Engineer

Few people design computers! Very few design instruction sets!

Many people design computer components.

Very many people are concerned with computer function, in detail.

cs 152 Intro.15 ©DAP & SIK 1995

CS152:So what's in it for me?

° In-depth understanding of the inner-workings of modern computers,
their evolution, and trade-offs present at the hardware/software
boundary.

• Insight into fast/slow operations that are easy/hard to
implementation hardware

° Experience with the design process in the context of a large complex
(hardware) design.

• Functional Spec --> Control & Datapath --> Physical implementation

• Modern CAD tools

° Designer's "Intellectual" toolbox.

cs 152 Intro.16 ©DAP & SIK 1995

CS152: Computer Architecture and Engineering

Instructor: David A. Patterson Shing I. Kong (“Kong”)

DAP Office: 635 Soda Hall, 642-6587 patterson@cs

DAP Office Hours: Wed Fri. 2-3 or by appt.

SIK Office: 615 Soda Hall, 415-786-6377

 shing.kong@eng.sun.com

SIK Office Hours: Wed Fri. 2-3 (lecture day) or by phone

T. A's: Young Hyun Cho young@uclink.berkeley.edu

Kim Liu kliu@cs.berkeley.edu

Lloyd Huang lhuang@cs.berkeley.edu

Nikunj Oza oza@cs.berkeley.edu

Trevor Pering pering@eecs.berkeley.edu

Mark Spiller mds@ic.eecs.berkeley.edu

Text: Computer Organization & Design

The Hardware / Software Interface

cs 152 Intro.17 ©DAP & SIK 1995

Course Philosophy

° Lecture style

• 20-Minute Lecture

• 3- Minute Administrative Matters

• 25-Minute Lecture

• 5-Minute Break

• 25-Minute Lecture

° Reduce the workload of the class

• Final project has been simplified

• Lab 3 - 6 are directly related to the project

• Project teams must have at least 4 members

• No final exam. Only Two mid-terms.

° Reduce the pressure of taking exams

• Both mid-terms will be open book

• You will have 3 hrs to take the 2-hr test (5-8 PM, Sibley Auditorium)

• Our goal: test your knowledge

cs 152 Intro.18 ©DAP & SIK 1995

Simulate Industrial Environment

° Project teams must have at least 4 members

° Communicate with colleagues (team members)

• What have you done?

• What answers you need from others?

• You must document your work!!!

• Everyone must keep an on-line notebook

° Communicate with supervisor (TAs)

• How is the team’s plan?

• Short progress reports are required:

- What is the team’s game plan?

- What is each member’s responsibility?

cs 152 Intro.19 ©DAP & SIK 1995

Course Structure

° Design Intensive Class --- 75 to 150 hours per student

MIPS Instruction Set ---> Standard-Cell implementation

° Modern CAD System (VIEWlogic):

Schematic capture and Simulation

Design Description Computer-based "breadboard"

• Behavior over time

• Before construction

° Lectures:

• 1 week on Overview

• 2 weeks on ISA Design

• 5 weeks on Proc. Design

• 4 weeks on Memory and I/O

• 3 weeks on special topics

cs 152 Intro.20 ©DAP & SIK 1995

Homework Assignments and Project

° Each assignment consists of two parts

• Individual Effort: Exercises from the text book

• Team Effort (After Lab 3): Lab assignments

° All assignments are assigned on Friday and due on a later Monday

° Here is the list of lab assignments:

• Lab 1 Measure real machines’ performance (1 week)

• Lab 2 MIPS R3000 ISA and SPIM (2 weeks)

• Lab 3 ALU Design (2 weeks)

• Lab 4 Single Cycle Processor Design (2 weeks)

• Lab 5 Pipelined Processor Design (4 weeks - 1 week Spr. Break)

• Lab 6 Cache Design (2 weeks)

° Final project: Integrate Lab 5 and Lab 6 together

° Safety Net: Cache modules will be provided

cs 152 Intro.21 ©DAP & SIK 1995

Course Problems

° No late homeworks or labs (except for lab 5)

° What is cheating?

• Studying together in groups is encouraged

• Work must be your own

• Common examples of cheating: running out of time on a
assignment and then pick up output, take homework from box and
copy, person asks to borrow solution “just to take a look”, copying
an exam question, ...

cs 152 Intro.22 ©DAP & SIK 1995

Decide on penalties for cheating

° Exercises (book):

• 0 for problem

• 0 for homework assignment

• subtract full value for assignment

• subtract 2X full value for assignment

° Labs leading to project (groups: only penalize individuals?)

• 0 for problem

• 0 for homework assignment

• subtract full value for assignment

• subtract 2X full value for assignment

° Exams

• 0 for problem

• 0 for exam

cs 152 Intro.23 ©DAP & SIK 1995

The SPARCstation 20

SPARCstation 20

Memory
Controller Memory Bus

Memory SIMMs

Slot 1MBus

Slot 0MBus

MSBI

Slot 1SBus

Slot 0SBus

Slot 3SBus

Slot 2SBus

MBus

SEC MACIO

Disk

Tape

SCSI
Bus

SBus

Keyboard

& Mouse

Floppy

Disk

External Bus

cs 152 Intro.24 ©DAP & SIK 1995

Levels of Organization

SPARCstation 20

 SPARC
 Processor

Computer

Control

Datapath

Memory Devices

Input

Output

cs 152 Intro.25 ©DAP & SIK 1995

The Underlying Network

SPARCstation 20

Memory
Controller

Memory Bus

MSBI

Processor Bus:
MBus

SEC MACIO

Standard I/O Bus:

Sun’s High Speed I/O Bus:
SBus

Low Speed I/O Bus:
External Bus

SCSI Bus

cs 152 Intro.26 ©DAP & SIK 1995

Processor and Caches

SPARCstation 20

Slot 1MBus

Slot 0MBus

MBus

MBus Module

External Cache

DatapathRegisters

Internal
Cache

Control

SuperSPARC Processor

cs 152 Intro.27 ©DAP & SIK 1995

Memory

SPARCstation 20

Memory
Controller

Memory Bus

SI
M

M
 S

lo
t

0

SI
M

M
 S

lo
t

1

SI
M

M
 S

lo
t

2

SI
M

M
 S

lo
t

3

SI
M

M
 S

lo
t

4

SI
M

M
 S

lo
t

5

SI
M

M
 S

lo
t

6

SI
M

M
 S

lo
t

7

DRAM SIMM

DRAM

DRAM

DRAM

DRAMDRAMDRAMDRAM

DRAMDRAMDRAM

cs 152 Intro.28 ©DAP & SIK 1995

Input and Output (I/O) Devices

SPARCstation 20

Slot 1SBus

Slot 0SBus

Slot 3SBus

Slot 2SBus

SEC MACIO

Disk

Tape

SCSI
Bus

SBus

Keyboard

& Mouse

Floppy

Disk

External Bus

° SCSI Bus: Standard I/O Devices

° SBus: High Speed I/O Devices

° External Bus: Low Speed I/O Device

cs 152 Intro.29 ©DAP & SIK 1995

Standard I/O Devices

SPARCstation 20

Disk

Tape

SCSI
Bus

° SCSI = Small Computer Systems Interface

° A standard interface (IBM, Apple, HP, Sun ... etc.)

° Computers and I/O devices communicate with each other

° The hard disk is one I/O device resides on the SCSI Bus

cs 152 Intro.30 ©DAP & SIK 1995

High Speed I/O Devices

SPARCstation 20

Slot 1SBus

Slot 0SBus

Slot 3SBus

Slot 2SBus

SBus

° SBus is SUN’s own high speed I/O bus

° SS20 has four SBus slots where we can plug in I/O devices

° Example: graphics accelerator, video adaptor, ... etc.

° High speed and low speed are relative terms

cs 152 Intro.31 ©DAP & SIK 1995

Slow Speed I/O Devices

SPARCstation 20

Keyboard

& Mouse

Floppy

Disk

External Bus

° The are only four SBus slots in SS20--”seats” are expensive

° The speed of some I/O devices is limited by human reaction
time--very very slow by computer standard

° Examples: Keyboard and mouse

° No reason to use up one of the expensive SBus slot

cs 152 Intro.32 ©DAP & SIK 1995

Summary

° All computers consist of five components

• Processor: (1) datapath and (2) control

• (3) Memory

• (4) Input devices and (5) Output devices

° Not all “memory” are created equally

• Cache: fast (expensive) memory are placed closer to the processor

• Main memory: less expensive memory--we can have more

° Input and output (I/O) devices has the messiest organization

• Wide range of speed: graphics vs. keyboard

• Wide range of requirements: speed, standard, cost ... etc.

• Least amount of research (so far)

cs 152 Lec2.1 ©DAP & SIK 1995

CS152
Computer Architecture and Engineering

Lecture 2: Cost and Performance

January 20, 1995

Dave Patterson (patterson@cs) & Shing Kong (kong@cs)

Slides available on http://http.cs.berkeley.edu/~patterson

cs 152 Lec2.2 ©DAP & SIK 1995

Overview of Today’s Lecture: Cost and Performance

° Review from Last Lecture (2 minutes)

° Cost of Integrated Circuits (20 minutes)

° Administrative Matters (3 minutes)

° Definition and Measures of Performance (25 minutes)

° Break (5 minutes)

° Summarizing Performance and Performance Pitfalls (25 minutes)

cs 152 Lec2.3 ©DAP & SIK 1995

Review: What is "Computer Architecture"

° Co-ordination of levels of abstraction

I/O systemInstr. Set Proc.

Compiler
Operating

System

Application

Digital Design

Circuit Design

° Under a set of rapidly changing Forces

Instruction Set
 Architecture

cs 152 Lec2.4 ©DAP & SIK 1995

Review: Levels of Representation

High Level Language
Program

Assembly Language
Program

Machine Language
Program

Control Signal
Specification

Compiler

Assembler

Machine Interpretation

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

cs 152 Lec2.5 ©DAP & SIK 1995

Review: Levels of Organization

SPARCstation 20

 SPARC
 Processor

Computer

Control

Datapath

Memory Devices

Input

Output

cs 152 Lec2.6 ©DAP & SIK 1995

Review: Summary from Last Lecture

° All computers consist of five components

• Processor: (1) datapath and (2) control

• (3) Memory

• (4) Input devices and (5) Output devices

° Not all “memory” are created equally

• Cache: fast (expensive) memory are placed closer to the processor

• Main memory: less expensive memory--we can have more

° Input and output (I/O) devices has the messiest organization

• Wide range of speed: graphics vs. keyboard

• Wide range of requirements: speed, standard, cost ... etc.

• Least amount of research (so far)

cs 152 Lec2.7 ©DAP & SIK 1995

Integrated Circuits Costs

Die cost = Wafer cost
 Dies per Wafer * Die yield

Dies per wafer = π * (Wafer_diam / 2)2 – π * Wafer_diam – Test dies ≈ Wafer Area
 Die Area √ 2 * Die Area Die Area

Die Yield = Wafer yield * 1 +

Die Cost is goes roughly with the cube of the area.

{
− α
}Defects_per_unit_area * Die_Area

 α

cs 152 Lec2.8 ©DAP & SIK 1995

Real World Examples

Chip Metal Line Wafer Defect Area Dies/ Yield Die Cost
layers width cost /cm2 mm2 wafer

386DX 2 0.90 $900 1.0 43 360 71% $4

486DX2 3 0.80 $1200 1.0 81 181 54% $12

PowerPC 601 4 0.80 $1700 1.3 121 115 28% $53

HP PA 7100 3 0.80 $1300 1.0 196 66 27% $73

DEC Alpha 3 0.70 $1500 1.2 234 53 19% $149

SuperSPARC 3 0.70 $1700 1.6 256 48 13% $272

Pentium 3 0.80 $1500 1.5 296 40 9% $417

From "Estimating IC Manufacturing Costs,” by Linley Gwennap, Microprocessor
Report, August 2, 1993, p. 15

cs 152 Lec2.9 ©DAP & SIK 1995

IC cost = Die cost + Testing cost + Packaging cost
 Final test yield

Packaging Cost: depends on pins, heat dissipation , ...

Other Costs

Chip Die Package Test & Total
cost pins type cost Assembly

386DX $4 132 QFP $1 $4 $9
486DX2 $12 168 PGA $11 $12 $35
PowerPC 601 $53 304 QFP $3 $21 $77
HP PA 7100 $73 504 PGA $35 $16 $124
DEC Alpha $149 431 PGA $30 $23 $202
SuperSPARC $272 293 PGA $20 $34 $326
Pentium $417 273 PGA $19 $37 $473

cs 152 Lec2.10 ©DAP & SIK 1995

CMOS improvements

° Die size 2X / 3 years; Line widths halve / 7 years

R
a

ti
o

to

A

re
a

in

1

9
8

0

0

5

1 0

1 5

2 0

2 5

1 9 8 0 1 9 8 3 1 9 8 6 1 9 8 9 1 9 9 2

Die Size

cs 152 Lec2.11 ©DAP & SIK 1995

Technology Trends

Capacity Speed

Logic 2x in 3 years 2x in 3 years

DRAM 4x in 3 years 1.4x in 10 years

disk 4x in 3 years 1.4x in 10 years

cs 152 Lec2.12 ©DAP & SIK 1995

Processor Performance

Year

P
e
r
f
o
r
m
a
n
c
e

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 9 8 7 1 9 8 8 1 9 8 9 1 9 9 0 1 9 9 1 1 9 9 2 1 9 9 3

HP 9000/750

 IBM
RS6000 /540MIPS M2000

MIPS M/120S u n -4 /260

IBM Power 2/590

1 .54X /y r

1 .35X /y r

cs 152 Lec2.13 ©DAP & SIK 1995

The bottom line: Performance (and cost)

° Time to do the task (Execution Time)
– execution time, response time, latency

° Tasks per day, hour, week, sec, ns. .. (Performance)
– throughput, bandwidth

Plane

Boeing 747

BAD/Sud
Concodre

Speed

610 mph

1350 mph

DC to Paris

6.5 hours

3 hours

Passengers

470

132

Throughput
(pmph)

286,700

178,200

cs 152 Lec2.14 ©DAP & SIK 1995

The bottom line: Performance (and cost)

" X is n times faster than Y" means
ExTime(Y) Performance(X)
-------------- = ----------------------
ExTime(X) Performance(Y)

• Time of Concorde vs. Boeing 747?

• Throughput of Boeing 747 vs. Concodre?

cs 152 Lec2.15 ©DAP & SIK 1995

Administrative Matters

° CS152 news group: ucb.class.cs152

° Slides available via Mosaic: http://http.cs.berkeley.edu/~patterson

° Initial Assignment: Read Chapters 1 and 2 of “Computer Organization
and Design”, Exercises 1.1 to 1.26, 1.50 to 1.52, 2.5 to 2.7, 2.14-2.17, 2.33
+ run Linpack program on two machines and measure performance

° Class decided on penalties for cheating

• Exercises (book): 0 for homework assignment

• Labs leading to project (groups: penalize individuals in groups)

- 0 for assignment

• Exams: 0 for exam

° Book is hardcover version

° Other topics?

cs 152 Lec2.16 ©DAP & SIK 1995

Metrics of performance

Compiler

Programming
Language

Application

Datapath
Control

Transistors Wires Pins

ISA

Function Units

(millions) of Instructions per second – MIPS
(millions) of (F.P.) operations per second – MFLOP/s

Cycles per second (clock rate)

Megabytes per second

Answers per month
Operations per second

cs 152 Lec2.17 ©DAP & SIK 1995

Relating Processor Metrics

° CPU execution time = CPU clock cycles/pgm X clock cycle time

° or CPU execution time = CPU clock cycles/pgm ÷ clock rate

° CPU clock cycles/pgm = Instructions/pgm X avg. clock cycles per instr.

° or CPI = CPU clock cycles/pgm ÷ Instructions/pgm

° CPI tells us something about the Instruction Set Architecture, the
Implementation of that architecture, and the program measured

cs 152 Lec2.18 ©DAP & SIK 1995

Aspects of CPU Performance

CPU time = Seconds = Instructions x Cycles x Seconds

 Program Program Instruction Cycle

instr. count CPI clock rate

Program

Compiler

Instr. Set Arch.

Organization

Technology

cs 152 Lec2.19 ©DAP & SIK 1995

Aspects of CPU Performance

CPU time = Seconds = Instructions x Cycles x Seconds

 Program Program Instruction Cycle

instr count CPI clock rate

Program X

Compiler X (x)

Instr. Set. X X

Organization X X

Technology X

cs 152 Lec2.20 ©DAP & SIK 1995

Organizational Trade-offs

Compiler

Programming
Language

Application

Datapath
Control

Transistors Wires Pins

ISA

Function Units

Instruction Mix

Cycle Time

CPI

cs 152 Lec2.21 ©DAP & SIK 1995

CPI

CPU time = CycleTime * ∑ CPI * I
i = 1

n

i i

CPI = ∑ CPI * F where F = I
i = 1

n

i i i i

Instruction Count

"instruction frequency"

Invest Resources where time is Spent!

CPI = Instruction Count / (CPU Time * Clock Rate)
= Instruction Count / Cycles

“Average cycles per instruction”

cs 152 Lec2.22 ©DAP & SIK 1995

Example

Typical Mix

Base Machine (Reg / Reg)
Op Freq Cycles CPI(i) % Time
ALU 50% 1 .5 33%
Load 20% 2 .4 27%
Store 10% 2 .2 13%
Branch 20% 2 .4 27%
 1.5

cs 152 Lec2.23 ©DAP & SIK 1995

Marketing Metrics

MIPS = Instruction Count / Time * 10^6

= Clock Rate / CPI * 10^6

•machines with different instruction sets ?

•programs with different instruction mixes ?

• dynamic frequency of instructions

• uncorrelated with performance

MFLOP/S = FP Operations / Time * 10^6

•machine dependent

•often not where time is spent

cs 152 Lec2.24 ©DAP & SIK 1995

Why Do Benchmarks?

° How we evaluate differences

• Different systems

• Changes to a single system

° Provide a target

• Benchmarks should represent large class of important
programs

• Improving benchmark performance should help many
programs

° For better or worse, benchmarks shape a field

° Good ones accelerate progress

• good target for development

° Bad benchmarks hurt progress

• help real programs v. sell machines/papers?

• Inventions that help real programs don’t help benchmark

cs 152 Lec2.25 ©DAP & SIK 1995

Programs to Evaluate Processor Performance

° (Toy) Benchmarks

• 10-100 line

• e.g.,: sieve, puzzle, quicksort

° Synthetic Benchmarks

• attempt to match average frequencies of real workloads

• e.g., Whetstone, dhrystone

° Kernels

• Time critical excerpts of real programs

• e.g., Livermore loops

° Real programs

• e.g., gcc, spice

cs 152 Lec2.26 ©DAP & SIK 1995

Successful Benchmark: SPEC

° 1987 RISC industry mired in “bench marketing”:
(“That is 8 MIPS machine, but they claim 10 MIPS!”)

° EE Times + 5 companies band together to perform Systems
Performance Evaluation Committee (SPEC) in 1988:
Sun, MIPS, HP, Apollo, DEC

° Create standard list of programs, inputs, reporting: some real
programs, includes OS calls, some I/O

cs 152 Lec2.27 ©DAP & SIK 1995

SPEC first round

° First round 1989; 10 programs, single number to summarize
performance

° One program: 99% of time in single line of code

° New front-end compiler could improve dramatically

Benchmark

S
P

E
C

P

e
rf

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0
gc

c

ep
re

ss
o

sp
ic

e

do
du

c

na
sa

7 li

eq
nt

ot
t

m
a

tr
ix

3
0

0

fp
p

p
p

to
m

ca
tv

cs 152 Lec2.28 ©DAP & SIK 1995

SPEC Evolution

° Second round; SpecInt92 (6 integer programs) and SpecFP92 (14
floating point programs)

Compiler Flags unlimited. March 93 of DEC 4000 Model 610:

spice: unix.c:/def=(sysv,has_bcopy,”bcopy(a,b,c)=
memcpy(b,a,c)”

wave5: /ali=(all,dcom=nat)/ag=a/ur=4/ur=200

nasa7: /norecu/ag=a/ur=4/ur2=200/lc=blas

° Add SPECbase: one flag setting for integer programs & 1 for FP

° Third round; 1995; new set of programs

• “benchmarks useful for 3 years”

cs 152 Lec2.29 ©DAP & SIK 1995

How to Summarize Performance

° Arithmetic mean (or weighted arithmetic mean) tracks execution time:
SUM(Ti)/n or SUM(Wi*Ti)

° Harmonic mean (or weighted harmonic mean) of rates (e.g., MFLOPS)
tracks execution time:
n/SUM(1/Ri) or n/SUM(Wi/Ri)

° Normalized execution time is handy for scaling performance
(e.g., time on reference machine ÷ time on measured machine)

° But do not take the arithmetic mean of normalized execution time, use
the geometric mean (prod(Ri)^1/n)

° Alas, geometric mean rewards all improvements equally:
program A going from 2 seconds to 1 second as important as
program B going from 2000 seconds to 1000 seconds

cs 152 Lec2.30 ©DAP & SIK 1995

Impact of Means on SPECmark89 for IBM 550

 Ratio to VAX:Time: Weighted Time:

Program Before After Before After Before After

gcc 30 29 49 51 8.91 9.22

espresso 35 34 65 67 7.64 7.86

spice 47 47 510 510 5.69 5.69

doduc 46 49 41 38 5.81 5.45

nasa7 78 144 258 140 3.43 1.86

li 34 34 183 183 7.86 7.86

eqntott 40 40 28 28 6.68 6.68

matrix300 78 730 58 6 3.43 0.37

fpppp 90 87 34 35 2.97 3.07

tomcatv 133 138 20 19 2.01 1.94

Mean 54 72 124 108 54.42 49.99

 Geometric Arithmetic Weighted Arith.

Ratio 1.33 Ratio 1.16 Ratio 1.09

cs 152 Lec2.31 ©DAP & SIK 1995

Amdahl's Law

Speedup due to enhancement E:

 ExTime w/o E Performance w/ E

Speedup(E) = -------------------- = ---------------------

 ExTime w/ E Performance w/o E

Suppose that enhancement E accelerates a fraction F of the task

by a factor S and the remainder of the task is unaffected then,

ExTime(with E) = ((1-F) + F/S) X ExTime(without E)

Speedup(with E) = ExTime(without E) ÷
((1-F) + F/S) X ExTime(without E)

cs 152 Lec2.32 ©DAP & SIK 1995

Cost Summary

° Integrated circuits driving computer industry

° Die costs goes up with the cube of die area

cs 152 Lec2.33 ©DAP & SIK 1995

Performance Evaluation Summary

° Time is the measure of computer performance!

° Good products created when have:

• Good benchmarks

• Good ways to summarize performance

° If not good benchmarks and summary, then choice between improving
product for real programs vs. improving product to get more sales=>
sales almost always wins

° Remember Amdahl’s Law: Speedup is limited by unimproved part of
program

CPU time = Seconds = Instructions x Cycles x Seconds

 Program Program Instruction Cycle

cs 152 Lec 3 ISA.1
© Kong/Patterson 1995

Instruction Set Design

instruction set

software

hardware

cs 152 Lec 3 ISA.2
© Kong/Patterson 1995

Instruction Set Architecture

ADD
SUBTRACT
AND
OR
COMPARE
.
.
.

01010
01110
10011
10001
11010
.
.
.

Programmer's View

Computer's View

CPU
Memory

I/O

Computer
Program
(Instructions)

Princeton (Von Neumann) Architecture
--- Data and Instructions mixed in same
 memory ("stored program computer")

--- Program as data (dubious advantage)
--- Storage utilization
--- Single memory interface

Harvard Architecture
--- Data & Instructions in
 separate memories

--- Has advantages in certain
 high performance imple-
 mentations

cs 152 Lec 3 ISA.3
© Kong/Patterson 1995

Basic Issues in Instruction Set Design

--- What operations (and how many) should be provided

 LD/ST/INC/BRN sufficient to encode any computation
 But not useful because programs too long!

--- How (and how many) operands are specified

 Most operations are dyadic (eg, A <- B + C)
 Some are monadic (eg, A <- ~B)

--- How to encode these into consistent instruction formats

 Instructions should be multiples of basic data/address widths

Typical instruction set:

 ° 32 bit word
 ° basic operand addresses are 32 bits long
 ° basic operands, like integers, are 32 bits long
 ° in general case, instruction could reference 3 operands (A := B + C)

 challenge: encode operations in a small number of bits!

cs 152 Lec 3 ISA.4
© Kong/Patterson 1995

Execution Cycle

Instruction
Fetch

Instruction

Decode

Operand
Fetch

Execute

Result
Store

Next

Instruction

Obtain instruction from program storage

Determine required actions and instruction size

Locate and obtain operand data

Compute result value or status

Deposit results in storage for later use

Determine successor instruction

cs 152 Lec 3 ISA.5
© Kong/Patterson 1995

What Must be Specified?

Instruction
Fetch

Instruction

Decode

Operand
Fetch

Execute

Result
Store

Next

Instruction

° Instruction Format or Encoding

– how is it decoded?

° Location of operands and result

– where other than memory?

– how many explicit operands?

– how are memory operands located?

– which can or cannot be in memory?

° Data type and Size

° Operations

– what are supported

° Successor instruction

– jumps, conditions, branches

- fetch-decode-execute is implicit!

cs 152 Lec 3 ISA.6
© Kong/Patterson 1995

Topics to be covered

° Location of operands and result

– where other than memory?

– how many explicit operands?

– how are memory operands located?

– which can or cannot be in memory?

° Operations

° Instruction Format or Encoding

– how is it decoded?

° Data type and Size

– what are supported

cs 152 Lec 3 ISA.7
© Kong/Patterson 1995

Basic ISA Classes
Accumulator:

1 address add A acc ← acc + mem[A]

1+x address addx A acc ← acc + mem[A + x]

Stack:

0 address add tos ← tos + next

General Purpose Register:

2 address add A B EA(A) ← EA(A) + EA(B)

3 address add A B C EA(A) ← EA(B) + EA(C)

Load/Store:

3 address add Ra Rb Rc Ra ← Rb + Rc

load Ra Rb Ra ← mem[Rb]

store Ra Rb mem[Rb] ← Ra

Comparison:

Bytes per instruction? Number of Instructions? Cycles per instruction?

cs 152 Lec 3 ISA.8
© Kong/Patterson 1995

Comparing Number of Instructions

° Code sequence for C = A + B for four classes of instruction sets:

Stack Accumulator Register Register

(register-memory) (load-store)

Push A Load A Load R1,A Load R1,A

Push B Add B Add R1,B Load R2,B

Add Store C Store C, R1 Add R3,R1,R2

Pop C Store C,R3

cs 152 Lec 3 ISA.9
© Kong/Patterson 1995

General Purpose Registers Dominate

° Since 1975 all machines use machines use general purpose registers

° Advantages of registers

• registers are faster than memory

• registers are easier for a compiler to use

- e.g., (A*B) – (C*D) – (E*F) can do multiplies in any order
vs. stack

• registers can hold variables

- memory traffic is reduced, so program is sped up
(since registers are faster than memory)

- code density improves (since register named with fewer bits
than memory location)

cs 152 Lec 3 ISA.10
© Kong/Patterson 1995

Examples of Register Usage

Number of memory addresses per typical ALU instruction

Maximum number of operands per typical ALU instruction

Examples

0 3 SPARC, MIPS, Precision Architecture, Power PC

1 2 Intel 80x86, Motorola 68000

2 2 VAX (also has 3-operand formats)

3 3 VAX (also has 2-operand formats)

cs 152 Lec 3 ISA.11
© Kong/Patterson 1995

Pros and Cons of Number Memory Operands/Operands

° Register–register: 0 memory operands/instr, 3 (register) operands/instr

+ Simple, fixed-length instruction encoding. Simple code generation
model. Instructions take similar numbers of clocks to execute

– Higher instruction count than architectures with memory
references in instructions. Some instructions are short and bit
encoding may be wasteful.

° Register–memory (1,2)

+ Data can be accessed without loading first. Instruction format
tends to be easy to encode and yields good density.

– Operands are not equivalent since a source operand in a binary
operation is destroyed. Encoding a register number and a memory
addressin each instruction may restrict the number of registers.
Clocks per instruction varies by operand location.

° Memory–memory (3,3)

+ Most compact. Doesn’t waste registers for temporaries.

– Large variation in instruction size, especially for three-operand
instructions. Also, large variation in work per instruction. Memory
accesses create memory bottleneck.

cs 152 Lec 3 ISA.12
© Kong/Patterson 1995

Summary on Instruction Classes

° Expect new instructin set architecture to use general purpose register

° Pipelining => Expect it to use load store variant of GPR ISA

cs 152 Lec 3 ISA.13
© Kong/Patterson 1995

Administrative Matters

° CS152 news group: ucb.class.cs152

° Slides available via Mosaic: http://http.cs.berkeley.edu/~patterson

° Video tapes of lectures available for viewing in 205 McLaughlin, Mon-Fri
8AM to 5PM

° 1st Assignment due Monday; Second Assignment handed out Friday:
Questions, Problems?

° Other topics?

cs 152 Lec 3 ISA.14
© Kong/Patterson 1995

Memory Addressing

° Since 1980 almost every machine uses addresses to level of 8-bits
(byte)

° 2 questions for design of ISA:

• Since could read a 32-bit word as four loads of bytes from
sequential byte addresses or as one load word from a single byte
address, how do byte addresses map onto words?

• Can a word be placed on any byte boundary?

cs 152 Lec 3 ISA.15
© Kong/Patterson 1995

Addressing Objects

Big Endian: address of most significant byte = word address
(xx00 = Big End of word)
– IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

Little Endian: address of least significant byte = word address
(xx00 = Little End of word)
– Intel 80x86, DEC Vax

msb lsb

3 2 1 0 little endian word 0:

0 1 2 3 big endian word 0:

Alignment: require that objects fall on address that is multiple of
 their size.

cs 152 Lec 3 ISA.16
© Kong/Patterson 1995

Byte Swap Problem

D

C

B

A 0

1

2

3

increasing
byte
address

Big Endian

A

B

C

D 0

1

2

3

Little Endian

When words are transferred between Big Endian and Little Endian
 machines, you must permute the bytes to successfully copy the
 data

Each system is self-consistent, but causes problems when they need
 communicate!

cs 152 Lec 3 ISA.17
© Kong/Patterson 1995

Addressing Modes

Addressing mode Example Meaning

Register Add R4,R3 R4← R4+R3

Immediate Add R4,#3 R4 ← R4+3

Displacement Add R4,100(R1) R4 ← R4+Mem[100+R1]

Register indirect Add R4,(R1) R4 ← R4+Mem[R1]

Indexed Add R3,(R1+R2) R3 ← R3+Mem[R1+R2]

Direct or absolute Add R1,(1001) R1 ← R1+Mem[1001]

Memory indirect Add R1,@(R3) R1 ← R1+Mem[Mem[R3]]

Auto-increment Add R1,(R2)+ R1 ← R1+Mem[R2]; R2 ← R2+d

Auto-decrement Add R1,–(R2) R2 ← R2–d; R1 ← R1+Mem[R2]

Scaled Add R1,100(R2)[R3] R1 ← R1+Mem[100+R2+R3*d]

cs 152 Lec 3 ISA.18
© Kong/Patterson 1995

Addressing Mode Usage

3 programs measured on machine with all address modes (VAX)

--- Displacement: 42% avg, 32% to 55%

--- Immediate: 33% avg, 17% to 43%

--- Register deferred (indirect): 13% avg, 3% to 24%

--- Scaled: 7% avg, 0% to 16%

--- Memory indirect: 3% avg, 1% to 6%

--- Misc: 2% avg, 0% to 3%

cs 152 Lec 3 ISA.19
© Kong/Patterson 1995

Displacement Address Size

0 %

5 %

1 0 %

1 5 %

2 0 %

2 5 %

3 0 %

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

Int. Avg. FP Avg.

° Average of 5 programs from SPECint92 and Average of 5 programs
from SPECfp92

° X-axis is in powers of 2: 4 => addresses > 23 (8) and ≤ 24 (16)

° 1% of addresses > 16-bits

cs 152 Lec 3 ISA.20
© Kong/Patterson 1995

Immediate Size

• 50% to 60% fit within 8 bits

• 75% to 80% fit within 16 bits

cs 152 Lec 3 ISA.21
© Kong/Patterson 1995

Addressing Summary

•Data Addressing modes that are important:
Displacement, Immediate, Register Indirect

•Displacement size should be 12 to 16 bits

•Immediate size should be 8 to 16 bits

cs 152 Lec 3 ISA.22
© Kong/Patterson 1995

Typical Operations

Data Movement Load (from memory)
Store (to memory)
memory-to-memory move
register-to-register move
input (from I/O device)
output (to I/O device)
push, pop (to/from stack)

Arithmetic integer (binary + decimal) or FP
Add, Subtract, Multiply, Divide

Logical not, and, or, set, clear

Shift shift left/right, rotate left/right

Control (Jump/Branch) unconditional, conditional

Subroutine Linkage call, return

Interrupt trap, return

Synchronization test & set (atomic r-m-w)

String search, translate

cs 152 Lec 3 ISA.23
© Kong/Patterson 1995

Top 10 80x86 Instructions

° Rank instruction Integer Average Percent total executed

1 load 22%

2 conditional branch 20%

3 compare 16%

4 store 12%

5 add 8%

6 and 6%

7 sub 5%

8 move register-register 4%

9 call 1%

10 return 1%

Total 96%

° Simple instructions dominate instruction frequency

cs 152 Lec 3 ISA.24
© Kong/Patterson 1995

Methods of Testing Condition

° Condition Codes

Processor status bits are set as a side-effect of arithmetic
instructions (possibly on Moves) or explicitly by compare or
test instructions.
ex: add r1, r2, r3

 bz label

° Condition Register

Ex: cmp r1, r2, r3

bgt r1, label

° Compare and Branch
Ex: bgt r1, r2, label

cs 152 Lec 3 ISA.25
© Kong/Patterson 1995

Condition Codes

Setting CC as side effect can reduce the # of instructions

X: .
 .
 .
 SUB r0, #1, r0
 BRP X

X: .
 .
 .
 SUB r0, #1, r0
 CMP r0, #0
 BRP X

vs.

But also has disadvantages:

--- not all instructions set the condition codes
 which do and which do not often confusing!
 e.g., shift instruction sets the carry bit

--- dependency between the instruction that sets the CC and the one
 that tests it: to overlap their execution, may need to separate them
 with an instruction that does not change the CC

ifetch read compute write

ifetch read compute write

New CC computedOld CC read

cs 152 Lec 3 ISA.26
© Kong/Patterson 1995

Branches

--- Conditional control transfers

Four basic conditions:
 N -- negative
 Z -- zero

V -- overflow
C -- carry

Sixteen combinations of the basic four conditions:
Always
Never
Not Equal
Equal
Greater
Less or Equal
Greater or Equal
Less
Greater Unsigned
Less or Equal Unsigned
Carry Clear
Carry Set
Positive
Negative
Overflow Clear
Overflow Set

Unconditional
NOP
~Z
Z
~[Z + (N + V)]
Z + (N + V)
~(N + V)
N + V
~(C + Z)
C + Z
~C
C
~N
N
~V
V

cs 152 Lec 3 ISA.27
© Kong/Patterson 1995

Conditional Branch Distance

Bits of Branch Dispalcement

0 %

5 %

1 0 %

1 5 %

2 0 %

2 5 %

3 0 %

3 5 %

4 0 %

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

Int. Avg. FP Avg.

• Distance from branch in instructions 2i => ≤ ±2i-1 & > 2i-2

• 25% of integer branches are > 2 & ≤ 4 or -2 to -4 &

cs 152 Lec 3 ISA.28
© Kong/Patterson 1995

Conditional Branch Addressing

• PC-relative since most branches are relatively close
 to the current PC address

• At least 8 bits suggested (± 128 instructions)

• Compare Equal/Not Equal most important for integer
 programs

Frequency of comparison
types in branches

0 % 2 0 % 4 0 % 6 0 % 8 0 % 1 0 0 %

EQ/NE

GT/LE

LT/GE

2 3 %

4 0 %

8 6 %

7 %

7 %

Int Avg.

FP Avg.

cs 152 Lec 3 ISA.29
© Kong/Patterson 1995

Operation Summary

• Support these simple instructions, since they
will dominate the number of instructions executed:

load,
store,
add,
subtract,
move register-register,
and,
shift,
compare equal, compare not equal,
branch (with a PC-relative address at least 8-bits long),
jump,
call,
return;

cs 152 Lec 3 ISA.30
© Kong/Patterson 1995

Data Types
Bit: 0, 1

Bit String: sequence of bits of a particular length
 4 bits is a nibble
 8 bits is a byte
 16 bits is a half-word (VAX: word)
 32 bits is a word (VAX: long word)

Character:
 ASCII 7 bit code
 EBCDIC 8 bit code

Decimal:
 digits 0-9 encoded as 0000b thru 1001b
 two decimal digits packed per 8 bit byte

Integers:
 Sign & Magnitude: 0X vs. 1X
 1's Complement: 0X vs. 1(~X)
 2's Complement: 0X vs. (1's comp) + 1

Floating Point:
 Single Precision
 Double Precision
 Extended Precision

Positive #'s same in all
First 2 have two zeros
Last one usually chosen

M x RE
How many +/- #'s?
Where is decimal pt?
How are +/- exponents
 represented?

exponent

base
mantissa

cs 152 Lec 3 ISA.31
© Kong/Patterson 1995

Operand Size Usage

Frequency of reference by size

0 % 2 0 % 4 0 % 6 0 % 8 0 %

Byte

Halfword

Word

Doubleword

0 %

3 1 %

6 9 %

7 %

1 9 %

7 4 %

0 %

Int Avg.

FP Avg.

•Support these data sizes and types:
8-bit, 16-bit, 32-bit integers and
32-bit and 64-bit IEEE 754 floating point numbers

cs 152 Lec 3 ISA.32
© Kong/Patterson 1995

Instruction Format

• If have many memory operands per instructions and
 many addressing modes, need an Address Specifier
 per operand
•If have load-store machine with 1 address per instr.
 and one or two addressing modes, then just encode
 addressing mode in the opcode

cs 152 Lec 3 ISA.33
© Kong/Patterson 1995

Generic Examples of Instruction Formats

Variable:

Fixed:

Hybrid:

…

cs 152 Lec 3 ISA.34
© Kong/Patterson 1995

Summary of Instruction Formats

• If code size is most important,
 use variable length instructions

•If performance is over is most important,
 use fixed length instructions

cs 152 Lec 3 ISA.35
© Kong/Patterson 1995

Compilers and Instruction Set Architectures

• Ease of compilation
° orthogonality: no special registers, few special cases,
 all operand modes available with any data type or instruction type

° completeness: support for a wide range of operations
 and target applications

° regularity: no overloading for the meanings of instruction fields

° streamlined: resource needs easily determined

• Register Assignment is critical too

cs 152 Lec 3 ISA.36
© Kong/Patterson 1995

Modern Register Assignment

° Keep args and local variables in registers

- unless their "location" is obtained.

° Assign registers by "graph coloring"

• Works well if at least 16 registers

A=
B=
... B ...
C =
... A ...
D = ...
 ... D ...
C...

A B

C D

cs 152 Lec 3 ISA.37
© Kong/Patterson 1995

Summary of Compiler Considerations

•Provide at least 16 general purpose registers
plus separate floating-point registers,

•Be sure all addressing modes apply to all
data transfer instructions,

•Aim for a minimalist instruction set.

cs 152 Lec 3 ISA.38
© Kong/Patterson 1995

Instruction Set Metrics

Design-time metrics:
° Can it be implemented, in how long, at what cost?

° Can it be programmed? Ease of compilation?

Static Metrics:
° How many bytes does the program occupy in memory?

Dynamic Metrics:

° How many instructions are executed?

° How many bytes does the processor fetch to execute the program?

° How many clocks are required per instruction?

° How "lean" a clock is practical?

Best Metric: Time to execute the program!

NOTE: this depends on instructions set, processor organization, and
 compilation techniques.

CPI

Inst. Count Cycle Time

cs 152 Lec 3 ISA.39
© Kong/Patterson 1995

Lecture Summary: ISA

° Use general purpose registers with a load-store architecture;

° Support these addressing modes: displacement (with an address offset
size of 12 to 16 bits), immediate (size 8 to 16 bits), and register deferred;

° Support these simple instructions, since they will dominate the number
of instructions executed: load, store, add, subtract, move register-
register, and, shift, compare equal, compare not equal, branch (with a
PC-relative address at least 8-bits long), jump, call, and return;

° Support these data sizes and types: 8-bit, 16-bit, 32-bit integers and 64-
bit IEEE 754 floating point numbers;

° Use fixed instruction encoding if interested in performance and use
variable instruction encoding if interested in code size;

° Provide at least 16 general purpose registers plus separate floating-
point registers, be sure all addressing modes apply to all data transfer
instructions, and aim for a minimalist instruction set.

cs 152 Lec4.1 ©DAP & SIK 1995

CS152
Computer Architecture and Engineering

Lecture 4: MIPS Instruction Set Architecture

January 27, 1995

Dave Patterson (patterson@cs) & Shing Kong (kong@cs)

Slides available on http://http.cs.berkeley.edu/~patterson

cs 152 Lec4.2 ©DAP & SIK 1995

Overview of Today’s Lecture: MIPS et al

° Review from Last Lecture (3 minutes)

° MIPS ISA (20 minutes)

° Administrative Matters (3 minutes)

° More MIPS (25 minutes)

° Break (5 minutes)

° MIPS (VAX, 80x86?) (25 minutes)

cs 152 Lec4.3 ©DAP & SIK 1995

Review: Instruction Set Design

instruction set

software

hardware

cs 152 Lec4.4 ©DAP & SIK 1995

Execution Cycle

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

Obtain instruction from program storage

Determine required actions and instruction size

Locate and obtain operand data

Compute result value or status

Deposit results in storage for later use

Determine successor instruction

cs 152 Lec4.5 ©DAP & SIK 1995

Review: Summary

° Use general purpose registers with a load-store architecture;

° Provide at least 16 general purpose registers plus separate floating-
point registers,

° Support these addressing modes: displacement (with an address offset
size of 12 to 16 bits), immediate (size 8 to 16 bits), and register deferred;

° Be sure all addressing modes apply to all data transfer instructions,

° Use fixed instruction encoding if interested in performance and use
variable instruction encoding if interested in code size;

° Support these data sizes and types: 8-bit, 16-bit, 32-bit integers and 32-
bit and 64-bit IEEE 754 floating point numbers;

° Support these simple instructions, since they will dominate the number
of instructions executed: load, store, add, subtract, move register-
register, and, shift, compare equal, compare not equal, branch (with a
PC-relative address at least 8-bits long), jump, call, and return;

° Aim for a minimalist instruction set.

cs 152 Lec4.6 ©DAP & SIK 1995

MIPS R2000 / R3000 Registers

° Programmable storage

• 2^32 x bytes

• 31 x 32-bit GPRs (R0 = 0)

• 32 x 32-bit FP regs (paired DP)

• HI, LO, PC

0r0
r1
°
°
°
r31
PC
lo
hi

cs 152 Lec4.7 ©DAP & SIK 1995

MIPS Addressing Modes/Instruction Formats

op rs rt rd

immed

register

Register (direct)

op rs rt

register

Base+index

+

Memory

immedop rs rtImmediate

immedop rs rt

PC

PC-relative

+

Memory

cs 152 Lec4.8 ©DAP & SIK 1995

MIPS R2000 / R3000 Operation Overview

° Arithmetic logical

° Add, AddU, Sub, SubU, And, Or, Xor, Nor, SLT, SLTU

° AddI, AddIU, SLTI, SLTIU, AndI, OrI, XorI, LUI

° SLL, SRL, SRA, SLLV, SRLV, SRAV

° Memory Access

° LB, LBU, LH, LHU, LW, LWL,LWR

° SB, SH, SW, SWL, SWR

cs 152 Lec4.9 ©DAP & SIK 1995

Multiply / Divide

° Start multiply, divide

• MULT rs, rt

• MULTU rs, rt

• DIV rs, rt

• DIVU rs, rt

° Move result from multiply, divide

• MFHI rd

• MFLO rd

° Move to HI or LO

• MTHI rd

• MTLO rd

Registers

HI LO

cs 152 Lec4.10 ©DAP & SIK 1995

MIPS arithmetic instructions

Instruction Example Meaning Comments

add add $1,$2,$3 $1 = $2 + $3 3 operands; exception possible

subtract sub $1,$2,$3 $1 = $2 – $3 3 operands; exception possible

add immediate addi $1,$2,100 $1 = $2 + 100 + constant; exception possible

add unsigned addu $1,$2,$3 $1 = $2 + $3 3 operands; no exceptions

subtract unsigned subu $1,$2,$3 $1 = $2 – $3 3 operands; no exceptions

add imm. unsign. addiu $1,$2,100 $1 = $2 + 100 + constant; no exceptions

multiply mult $2,$3 Hi, Lo = $2 x $3 64-bit signed product

multiply unsigned multu$2,$3 Hi, Lo = $2 x $3 64-bit unsigned product

divide div $2,$3 Lo = $2 ÷ $3, Lo = quotient, Hi = remainder

 Hi = $2 mod $3

divide unsigned divu $2,$3 Lo = $2 ÷ $3, Unsigned quotient & remainder

 Hi = $2 mod $3

Move from Hi mfhi $1 $1 = Hi Used to get copy of Hi

Move from Lo mflo $1 $1 = Lo Used to get copy of Lo

cs 152 Lec4.11 ©DAP & SIK 1995

MIPS logical instructions

Instruction Example Meaning Comment

and and $1,$2,$3 $1 = $2 & $3 3 reg. operands; Logical AND

or or $1,$2,$3 $1 = $2 | $3 3 reg. operands; Logical OR

xor xor $1,$2,$3 $1 = $2 ⊕ $3 3 reg. operands; Logical XOR

nor nor $1,$2,$3 $1 = ~($2 |$3) 3 reg. operands; Logical NOR

and immediate andi $1,$2,10 $1 = $2 & 10 Logical AND reg, constant

or immediate ori $1,$2,10 $1 = $2 | 10 Logical OR reg, constant

xor immediate xori $1, $2,10 $1 = ~$2 &~10 Logical XOR reg, constant

shift left logical sll $1,$2,10 $1 = $2 << 10 Shift left by constant

shift right logical srl $1,$2,10 $1 = $2 >> 10 Shift right by constant

shift right arithm. sra $1,$2,10 $1 = $2 >> 10 Shift right (sign extend)

shift left logical sllv $1,$2,$3 $1 = $2 << $3 Shift left by variable

shift right logical srlv $1,$2, $3 $1 = $2 >> $3 Shift right by variable

shift right arithm. srav $1,$2, $3 $1 = $2 >> $3 Shift right arith. by variable

cs 152 Lec4.12 ©DAP & SIK 1995

MIPS data transfer instructions

Instruction Comment

SW 500(R4), R3 Store word

SH 502(R2), R3 Store half

SB 41(R3), R2 Store byte

LW R1, 30(R2) Load word

LH R1, 40(R3) Load halfword

LHU R1, 40(R3) Load halfword unsigned

LB R1, 40(R3) Load byte

LBU R1, 40(R3) Load byte unsigned

LUI R1, 40 Load Upper Immediate (16 bits shifted left by 16)

cs 152 Lec4.13 ©DAP & SIK 1995

Compare and Branch

° Compare and Branch

• BEQ rs, rt, offset if R[rs] == R[rt] then PC-relative branch

• BNE rs, rt, offset <>

° Compare to zero and Branch

• BLEZ rs, offset if R[rs] <= 0 then PC-relative branch

• BGTZ rs, offset >

• BLT <

• BGEZ >=

• BLTZAL rs, offset if R[rs] < 0 then branch and link (into R 31)

• BGEZAL >=

° Remaining set of compare and branch take two instructions

° Almost all comparisons are against zero!

cs 152 Lec4.14 ©DAP & SIK 1995

MIPS jump, branch, compare instructions

Instruction Example Meaning

branch on equal beq $1,$2,100 if ($1 == $2) go to PC+4+100
Equal test; PC relative branch

branch on not eq. bne $1,$2,100 if ($1!= $2) go to PC+4+100
Not equal test; PC relative

set on less than slt $1,$2,$3 if ($2 < $3) $1=1; else $1=0
Compare less than; 2’s comp.

set less than imm. slti $1,$2,100 if ($2 < 100) $1=1; else $1=0
Compare < constant; 2’s comp.

set less than uns. sltu $1,$2,$3 if ($2 < $3) $1=1; else $1=0
Compare less than; natural no.

set l. t. imm. uns. sltiu $1,$2,100 if ($2 < 100) $1=1; else $1=0
Compare < constant; natural

jump j 10000 go to 10000
Jump to target address

jump register jr $31 go to $31
For switch, procedure return

jump and link jal 10000 $31 = PC + 4; go to 10000
For procedure call

cs 152 Lec4.15 ©DAP & SIK 1995

Administrative Matters

° First Assignment due Monday at 4PM

• Please put discussion section number or time on homework!

° Second Assignment: Read Chapter 3 and Appendix A of “Computer
Organization and Design”, do Exercises + run MIPS program on SPIM
and debug broken SPIM

• Exercises due following Monday (2/6)

• Lab (Problems 0,1,2,3) due 2 Mondays later (2/13)

• Start soon! 2 weeks because its more than one weeks work

• Problems 0, 1, 2 & Exercises by yourself

• Problem 3 only of lab in pairs

- Pairs randomly assigned in discussion sections

• Estimate time spent on prior assignment for feedback

° Other topics?

cs 152 Lec4.16 ©DAP & SIK 1995

Why Are Stacks So Great?

Stacking of Subroutine Calls & Returns and Environments:

A:
 CALL B

 CALL C

 C:
 RET

 RET

B:

A

A B

A B C

A B

A

Some machines provide a memory stack as part of the architecture
 (e.g., the VAX)

Sometimes stacks are implemented via software convention (e.g.,
 MIPS)

cs 152 Lec4.17 ©DAP & SIK 1995

Memory Stacks

Useful for stacked environments/subroutine call & return even if
operand stack not part of architecture

Stacks that Grow Up vs. Stacks that Grow Down:

a
b
c

0 Little

inf. Big 0 Little

inf. Big

Memory
Addresses

SP

Next
Empty?

Last
Full?

How is empty stack represented?

Little --> Big/Last Full

POP: Read from Mem(SP)
 Decrement SP

PUSH: Increment SP
 Write to Mem(SP)

grows
up

grows
down

Little --> Big/Next Empty

POP: Decrement SP
 Read from Mem(SP)

PUSH: Write to Mem(SP)
 Increment SP

cs 152 Lec4.18 ©DAP & SIK 1995

Call-Return Linkage: Stack Frames

FP

ARGS

Callee Save
Registers

Local Variables

SP

Reference args and
local variables at
fixed (positive) offset
from FP

Grows and shrinks during
expression evaluation

(old FP, RA)

° Many variations on stacks possible (up/down, last pushed / next)

° Block structured languages contain link to lexically enclosing frame.

High Mem

Low Mem

cs 152 Lec4.19 ©DAP & SIK 1995

MIPS: Software conventions

0 zero constant 0

1 at reserved for assembler

2 v0 expression evaluation and

3 v1 function results

4 a0 arguments

5 a1

6 a2

7 a3

8 t0 temporary: caller saves

. . .

15 t7

16 s0 callee saves

. . .

23 s7

24 t8

25 t9

26 k0 reserved for OS kernel

27 k1

28 gp Pointer to global area

29 sp Stack pointer

30 fp frame pointer

31 ra Return Address (HW)

cs 152 Lec4.20 ©DAP & SIK 1995

MIPS / GCC Calling Conventions

FP

SPfact:

addiu $sp, $sp, -32

sw $ra, 20($sp)

sw $fp, 16($sp)

addu $fp, $sp, 32

. . .

sw $a0, 0($fp)

...

lw $31, 20($sp)

lw $fp, 16($sp)

addiu $sp, $sp, 32

jr $31

ra
oFP

ra
old FP

ra

FP

SP
ra

FP

SP

low
address

First four args passed in registers.

cs 152 Lec4.21 ©DAP & SIK 1995

Example in C: swap

swap(int v[], int k)

{

 int temp;

 temp = v[k];

 v[k] = v[k+1];

 v[k+1] = temp;

}

° Assume temp is register $15; arguments in $a1, $a2; $16 is scratch reg:

° Write MIPS code

cs 152 Lec4.22 ©DAP & SIK 1995

swap: MIPS

swap:

 addi $sp,$sp, –4

sw $16, 8($sp)

sll $t2, $a2,2

add $t2, $a1,$t2

lw $15, 0($t2)

lw $16, 4($t2)

sw $16, 0($t2)

sw $15, 4($t2)

lw $16, 8($sp)

addiu $sp,$sp, 4

jr $31

cs 152 Lec4.23 ©DAP & SIK 1995

Branch & Pipelines

ifetch read compute write

ifetch read compute write

ifetch read compute write

Bnch

Delay Slot

Branch Target

By the end of the read stage of the Branch instruction, the CPU knows
whether or not the branch will take place. However, it will have fetched
the next instruction by then, regardless of whether or not a branch
will be taken.

cs 152 Lec4.24 ©DAP & SIK 1995

Delayed Branches: Redefine behavior

Inst Fetch Dcd & Op Fetch ExecuteBranch:

Inst Fetch Dcd & Op Fetch

Inst Fetch

Executeexecute successor
even if branch taken!

Then branch target
or continue Single delay slot

impacts the critical path

•Compiler can fill a single delay slot with a

useful instruction 50% of the time.

• try to move down from above jump

•move up from target, if safe

add r3, r1, r2

sub r4, r4, 1

bz r4, LL

...

LL: add rd, ...

cs 152 Lec4.25 ©DAP & SIK 1995

Standard and Delayed Interpretation
add rd, rs, rt R[rd] <- R[rs] + R[rd];

PC <- PC + 4;

beq rs, rt, offset if R[rd] == R[rt] then PC <- PC + SX(offset)

 else PC <- PC + 4;

sub rd, rs, rt . . .

. . .

L1: target

add rd, rs, rt R[rd] <- R[rs] + R[rd];

PC <- nPC; nPC <- nPC + 4;

beq rs, rt, offset if R[rd] == R[rt] then nPC <- nPC + SX(offset)

 else nPC <- nPC + 4;

PC <- nPC

sub rd, rs, rt . . .

. . .

L1: target

PC

PC

nPC

Delayed Loads?

cs 152 Lec4.26 ©DAP & SIK 1995

Delayed Branches (cont.)

Execution History

instr0

BCND X

instr1

instr2

 .

 .

 .

X:

PC

nPCPC

nPCPC

nPC

PC

nPC
t0t1t2t2'

Branch
Taken

Branch
Not

Taken

Branches are the bane of pipelined machines
Delayed branches complicate the compiler slightly, but make pipelining
 easier to implement and more effective
Good strategy to move some complexity to compile time

cs 152 Lec4.27 ©DAP & SIK 1995

Miscellaneous MIPS instructions

° break A breakpoint trap occurs, transfers control to
exception handler

° syscall A system trap occurs, transfers control to
exception handler

° coprocessor instrs. Support for floating point: discussed later

° TLB instructions Support for virtual memory: discussed later

° restore from exception Restores previous interrupt mask & kernel/user
mode bits into status register

° load word left/right Supports misaligned word loads

° store word left/right Supports misaligned word stores

cs 152 Lec4.28 ©DAP & SIK 1995

Details of the MIPS instruction set

° Register zero always has the value zero (even if you try to write it)

° Branch and jump instructions put the return address PC+4 into the link
register

° All instructions change all 32 bits of the destination reigster (including lui,
lb, lh) and all read all 32 bits of sources (add, sub, and, or, …)

° Immediate arithmetic and logical instructions are extended as follows:

• logical immediates are zero extended to 32 bits

• arithmetic immediates are sign extended to 32 bits

° The data loaded by the instructions lb and lh are extended as follows:

• lbu, lhu are zero extended

• lb, lh are sign extended

° Overflow can occur in these arithmetic and logical instructions:

• add, sub, addi

• it cannot occur in addu, subu, addiu, and, or, xor, nor, shifts, mult,
multu, div, divu

cs 152 Lec4.29 ©DAP & SIK 1995

Other ISAs

° Intel 8086/88 => 80286 => 80386 => 80486 => Pentium => P6

• 8086 few transistors to implement 16-bit microprocessor

• tried to be somewhat compatible with 8-bit microprocessor 8080

• successors added features which where missing from 8086 over
next 15 years

• product several different intel enigneers over 10 to 15 years

• Announced 1978

° VAX simple compilers & small code size =>

• efficient instruction encoding

• powerful addressing modes

• powerful instructions

• few registers

• product of a single talented architect

• Announced 1977

cs 152 Lec4.30 ©DAP & SIK 1995

Machine Examples: Address & Registers

Intel 8086

VAX 11

MC 68000

MIPS

2 x 8 bit bytes
AX, BX, CX, DX
SP, BP, SI, DI
CS, SS, DS
IP, Flags

2 x 8 bit bytes
16 x 32 bit GPRs

2 x 8 bit bytes
8 x 32 bit GPRs
7 x 32 bit addr reg
1 x 32 bit SP
1 x 32 bit PC

2 x 8 bit bytes
32 x 32 bit GPRs
32 x 32 bit FPRs
HI, LO, PC

acc, index, count, quot
stack, string
code,stack,data segment

r15-- program counter
r14-- stack pointer
r13-- frame pointer
r12-- argument ptr

32

32

24

20

cs 152 Lec4.31 ©DAP & SIK 1995

VAX Operations

° General Format:

(operation) (datatype) (2, 3)

2 or 3 explicit operands

° For example

add (b, w, l, f, d) (2, 3)

 Yields

addb2 addw2 addl2 addf2 addd2

addb3 addw3 addl3 addf3 addd3

cs 152 Lec4.32 ©DAP & SIK 1995

VAX format, addressing modes

General Instruction Format

OpCode A/M A/M A/M

Byte 0 1 n m

operand specifier

5 rregister

rautoinc 8

rAdisp byte

rC half word

rE word

r4index rm displacement

cs 152 Lec4.33 ©DAP & SIK 1995

swap: MIPS vs. VAX

swap:

 addiu $sp,$sp, –4 .word ^m<r0,r1,r2,r3>

sw $16, 8($sp)

sll $t2, $a2,2 movl r2, 4(a)

add $t2, $a1,$t2 movl r1, 8(a)

lw $15, 0($t2) movl r3, (r2)[r1]

lw $16, 4($t2) addl3 r0, #1,8(ap)

sw $16, 0($t2) movl (r2)[r1],(r2)[r0]

sw $15, 4($t2) movl (r2)[r0],r3

lw $16, 8($sp)

addiu $sp,$sp, 4

jr $31 ret

cs 152 Lec4.34 ©DAP & SIK 1995

Summary

° Use general purpose registers with a load-store architecture: YES

° Provide at least 16 general purpose registers plus separate floating-
point registers: 31 GPR & 32 FPR

° Support these addressing modes: displacement (with an address offset
size of 12 to 16 bits), immediate (size 8 to 16 bits), and register deferred;
: YES: 16 bits for immediate, displacement (disp=0 => register deferred)

° All addressing modes apply to all data transfer instructions : YES

° Use fixed instruction encoding if interested in performance and use
variable instruction encoding if interested in code size : Fixed

° Support these data sizes and types: 8-bit, 16-bit, 32-bit integers and 32-
bit and 64-bit IEEE 754 floating point numbers: YES

° Support these simple instructions, since they will dominate the number
of instructions executed: load, store, add, subtract, move register-
register, and, shift, compare equal, compare not equal, branch (with a
PC-relative address at least 8-bits long), jump, call, and return: YES, 16b

° Aim for a minimalist instruction set: YES

cs 152 Lec4.35 ©DAP & SIK 1995

Summary: Salient features of MIPS R3000

•32-bit fixed format inst (3 formats)

•32 32-bit GPR (R0 contains zero) and 32 FP registers (and HI LO)
•partitioned by software convention

•3-address, reg-reg arithmetic instr.
•Single address mode for load/store: base+displacement

–no indirection
–16-bit immediate plus LUI

•Simple branch conditions
• compare against zero or two registers for =
• no condition codes

•Delayed branch
•execute instruction after the branch (or jump) even if
the banch is taken (Compiler can fill a delayed branch with
useful work about 50% of the time)

cs 152 delay.1 ©DAP & SIK 1995

CS152
Computer Architecture and Engineering
Lecture 5: Technology & Delay Modeling

February 1, 1995

Dave Patterson (patterson@cs) and
Shing Kong (shing.kong@eng.sun.com)

Slides available on http://http.cs.berkeley.edu/~patterson

cs 152 delay.2 ©DAP & SIK 1995

Recap of Last Lecture

° Use general purpose registers with a load-store architecture

• Provide at least 16 GP registers and separate FP registers

° Support the following addressing modes:

• Displacement (with an address offset size of 12 to 16 bits)

• Immediate with size 8 to 16 bits

• Register deferred

° All addressing modes apply to all data transfer instructions

° Use fixed instruction encoding if interested in performance
Use variable instruction encoding if interested in code size

° Support these data sizes and types: 8-bit, 16-bit, 32-bit integers
32-bit and 64-bit IEEE floating point numbers

° Support these simple instructions: load, store, add, subtract, move
register-register, and, shift, compare equal, compare not equal, branch,
jump, call, and return

° Aim for a minimalist instruction set

cs 152 delay.3 ©DAP & SIK 1995

Outline of Today’s Lecture

° Recap of Last Lecture and Introduction of Today’s Lecture (4 min.)

° Performance and Technology trends (16 minutes)

° Administrative Matters and Questions (5 minutes)

° Delay Modeling and Gate Characterization (25 minutes)

° Questions and Break (5 minutes)

° Clocking Methodologies and Timing Considerations (25 minutes)

cs 152 delay.4 ©DAP & SIK 1995

P
er

fo
rm

an
ce

0.1

1

1 0

100

1000

1965 1970 1975 1980 1985 1990 1995 2000

Microprocessors

Minicomputers

Mainframes

Supercomputers

Performance and Technology Trends

° Feature Size: shrinks 10% / yr.

• Switching speed improves 1.2 / yr.

° Density: improves 1.2x / yr.

° Die Area: 1.2x / yr.

° Technology Power: 1.2 x 1.2 x 1.2 = 1.7 x / year

cs 152 delay.5 ©DAP & SIK 1995

P
er

fo
rm

an
ce

0.1

1

1 0

100

1000

1965 1970 1975 1980 1985 1990 1995 2000

Microprocessors

Minicomputers

Mainframes

Supercomputers

Performance and Technology Trends (Continue)

° Compute Power:

• Prior to 1985: less than 1.7 x / year

• After 1985: Microprocessor improves greater than 1.7 x / year

° The lesson of RISC is to keep the ISA as simple as possible:

• Shorter design cycle => fully exploit the advancing technology.

• Advance pipeline techniques

• Bigger and more sophisticated on-chip caches

cs 152 delay.6 ©DAP & SIK 1995

° CMOS: Complementary Metal Oxide Semiconductor

• NMOS (N-Type Metal Oxide Semiconductor) transistors

• PMOS (P-Type Metal Oxide Semiconductor) transistors

° NMOS Transistor

• Apply a HIGH (Vdd, 5V) to its gate
turns the transistor into a “conductor”

• Apply a LOW (GND, 0v) to its gate
shuts off the conduction path

° PMOS Transistor

• Apply a HIGH (Vdd, 5V) to its gate
 shuts off the conduction path

• Apply a LOW (GND, 0v) to its gate
 turns the transistor into a “conductor”

Basic Technology: CMOS

Vdd = 5V

GND = 0v

GND = 0v

Vdd = 5V

cs 152 delay.7 ©DAP & SIK 1995

° Inverter Operation

Vdd

OutIn

Symbol Circuit

Basic Components: CMOS Inverter

OutIn

Vdd Vdd
Vdd

Out

Open

Discharge

Open

Charge

Vin

Vout

Vdd

Vdd

PMOS

CMOS

cs 152 delay.8 ©DAP & SIK 1995

Basic Components: CMOS Logic Gates

NAND Gate NOR Gate

Vdd

A

B

Out

Vdd

A

B

Out

OutA

B

A

B

Out

A B Out

0 0 1
0 1 1
1 0 1
1 1 0

A B Out

0 0 1
0 1 0
1 0 0
1 1 0

cs 152 delay.9 ©DAP & SIK 1995

Gate Comparison

° If PMOS transistors is faster:

• It is OK to have PMOS transistors in series

• NOR gate is preferred

• NOR gate is preferred also if H -> L is more critical than L -> H

° If NMOS transistors is faster:

• It is OK to have NMOS transistors in series

• NAND gate is preferred

• NAND gate is preferred also if L -> H is more critical than H -> L

Vdd

A

B

Out

Vdd

A

B

Out

NAND Gate NOR Gate

cs 152 delay.10 ©DAP & SIK 1995

Range of Design Style

Gates

Routing Channel

Gates

Routing Channel

Gates

Standard
ALU

Standard Registers

Gates

C
us

to
m

 C
on

tr
ol

 L
og

ic

Custom
Register File

Custom Design Standard Cell Gate Array

Custom
ALU

cs 152 delay.11 ©DAP & SIK 1995

Questions and Administrative Matters

° CS152 Logic and Storage Components

cs 152 delay.12 ©DAP & SIK 1995

Ideal (CS) versus Reality (EE)

° When input 0 -> 1, output 1 -> 0 but NOT instantly

• Output goes 1 -> 0: output voltage goes from Vdd (5v) to 0v

° When input 1 -> 0, output 0 -> 1 but NOT instantly

• Output goes 0 -> 1: output voltage goes from 0v to Vdd (5v)

° Voltage does not like to change instantaneously

OutIn

Time

Voltage

1 => Vdd

Vin

Vout

0 => GND

cs 152 delay.13 ©DAP & SIK 1995

Fluid Timing Model

° Water <-> Electrical Charge Tank Capacity <-> Capacitance (C)

° Water Level <-> Voltage Water Flow <-> Charge Flowing (Current)

° Size of Pipes <-> Strength of Transistors (G)

° Time to fill up the tank ~ C / G

Reservoir

Level (V) = Vdd

Tank
(Cout)

Bottomless Sea

Sea Level
(GND)

SW2SW1

Vdd

SW1

SW2
Cout

Tank Level (Vout)

Vout

cs 152 delay.14 ©DAP & SIK 1995

Series Connection

° Total Propagation Delay = Sum of individual delays = d1 + d2

° Capacitance C1 has two components:

• Capacitance of the wire connecting the two gates

• Input capacitance of the second inverter

Vdd

Cout

Vout

Vdd

C1

V1VinV1Vin Vout

Voltage
Vdd

Vin

GND
Time

V1 Vout

Vdd/2
d1 d2

G1 G2

G1 G2

cs 152 delay.15 ©DAP & SIK 1995

Parallel Connection

° Delay (Vin -> V2) ! = Delay (Vin -> V3)

• Delay (Vin -> V2) = Delay (Vin -> V1) + Delay (V1 -> V2)

• Delay (Vin -> V3) = Delay (Vin -> V1) + Delay (V1 -> V3)

° Critical Path = The longest among the N parallel paths

° C1 = Wire C + Cin of Gate 2 + Cin of Gate 3

Vdd

C2

V2

Vdd

V1Vin V2

C1

V1Vin
G1 G2

Vdd

C3

V3
G3

V3

cs 152 delay.16 ©DAP & SIK 1995

General Cell Delay Model

° Tied inputs B ... X such that a change in A will causes Vout to change

• Example: If this is a AND gate, tie Input B, C, ... X to “1”

° Do not use this gate to drive any Cout > Ccritical

° Keep the model simple by using a linear equation:

• Delay (A -> Out) = Internal Delay + (Load Dependent Delay) x Cout

Cout

VoutA

B

X

.

.

.

Combinational
Logic Gate

Cout

Delay
Va -> Vout

X
X

X

X

X

X

Ccritical

Internal
Delay

cs 152 delay.17 ©DAP & SIK 1995

Characterize a Gate

° Input capacitance for each input

° For each input-to-output path:

• For each output transition type (H->L, L->H, H->Z, L->Z ... etc.)

- Internal delay (ns)

- Load dependent delay (ns / fF)

° Example: 2-input NAND Gate

OutA

B

For A and B: Input Load = 61 fF

For either A -> Out or B -> Out:
 TPlh = 0.5ns Tplhf = 0.0021ns / fF
 TPhl = 0.1ns TPhlf = 0.0020ns / fF

Delay A -> Out
Out: Low -> High

Cout

0.5ns

Slope =
0.0021ns / fF

cs 152 delay.18 ©DAP & SIK 1995

A Specific Example: 2 to 1 MUX

° Input Load

• A, B: I.L. (NAND) = 61 fF

• S: I.L. (INV) + I.L. (NAND) = 50 fF + 61 fF = 111 fF

° Load Dependent Delay: Same as Gate 3

• TAYlhf = 0.021 ns / fF TAYhlf = 0.020 ns / fF

• TBYlhf = 0.021 ns / fF TBYhlf = 0.020 ns / fF

• TSYlhf = 0.021 ns / fF TSYlhf = 0.020 ns / fF

Y = (A and !S)
or (A and S)

A

B

S

Gate 3

Gate 2

Gate 1
Wire 1

Wire 2

Wire 0

A

B

Y

S

2 x 1 M
ux

cs 152 delay.19 ©DAP & SIK 1995

2 to 1 MUX: Internal Delay Calculation

° Internal Delay:

• A to Y: I.D. G1 + (Wire 1 C + G3 Input C) * L.D.D G1 + I.D. G3

• B to Y: I.D. G2 + (Wire 2 C + G3 Input C) * L.D.D. G2 + I.D. G3

• S to Y (Worst Case): I.D. Inv + (Wire 0 C + G1 Input C) * L.D.D. Inv +
Internal Delay A to Y

° We can approximate the effect of “Wire 1 C” by:

• Assume Wire 1 has the same C as all the gate C attache to it.

• Total C Gate 1 need to drive: 2.0 x Input C of Gate 3

Y = (A and !S) or (A and S)

A

B

S

Gate 3

Gate 2

Gate 1
Wire 1

Wire 2

Wire 0

cs 152 delay.20 ©DAP & SIK 1995

2 to 1 MUX: Internal Delay Calculation (continue)

° Internal Delay:

• A to Y: I.D. G1 + (Wire 1 C + G3 Input C) * L.D.D G1 + I.D. G3

• B to Y: I.D. G2 + (Wire 2 C + G3 Input C) * L.D.D. G2 + I.D. G3

• S to Y (Worst Case): I.D. Inv + (Wire 0 C + G1 Input C) * L.D.D. Inv +
Internal Delay A to Y

° Specific Example:

• TAYlh = TPhl G1 + (2.0 * 61 fF) * TPhl G1 + TPlh G3
 = 0.1ns + 122 fF * 0.0020ns/fF + 0.5ns = 0.844ns

Y = (A and !S) or (A and S)

A

B

S

Gate 3

Gate 2

Gate 1
Wire 1

Wire 2

Wire 0

cs 152 delay.21 ©DAP & SIK 1995

Abstraction: 2 to 1 MUX

° Input Load: A = 61 fF, B = 61 fF, S = 111 fF

° Load Dependent Delay:

• TAYlhf = 0.021 ns / fF TAYhlf = 0.020 ns / fF

• TBYlhf = 0.021 ns / fF TBYhlf = 0.020 ns / fF

• TSYlhf = 0.021 ns / fF TSYlhf = 0.020 ns / f F

° Internal Delay:

• TAYlh = TPhl G1 + (2.0 * 61 fF) * TPhl G1 + TPlh G3

 = 0.1ns + 122 fF * 0.0020ns/fF + 0.5ns = 0.844ns

• Fun Exercises: TAYhl, TBYlh, TSYlh, TSYlh

A

B

Y

S

2 x 1 M
ux

A

B

S

Gate 3

Gate 2

Gate 1

Y

cs 152 delay.22 ©DAP & SIK 1995

Storage Element’s Timing Model

° Setup Time: Input must be stable BEFORE the trigger clock edge

° Hold Time: Input must REMAIN stable after the trigger clock edge

° Clock-to-Q time:

• Output cannot change instantaneously at the trigger clock edge

• Similar to delay in logic gates, two components:

- Internal Clock-to-Q

- Load dependent Clock-to-Q

D Q
D Don’t Care Don’t Care

Clk

UnknownQ

Setup Hold

Clock-to-Q

cs 152 delay.23 ©DAP & SIK 1995

Break (5 Minutes)

cs 152 delay.24 ©DAP & SIK 1995

CS152 Logic Elements

° NAND2, NAND3, NAND 4

° NOR2, NOR3, NOR4

° INV1x (normal inverter)

° INV4x (inverter with big output drive)

cs 152 delay.25 ©DAP & SIK 1995

CS152 Logic Elements (Continue)

° XOR2

° XNOR2

° PWR: Source of 1’s

° GND: Source of 0’s

cs 152 delay.26 ©DAP & SIK 1995

CS152 Storage Element

° D flip flop with negative edge triggered

cs 152 delay.27 ©DAP & SIK 1995

Clocking Methodology

° All storage elements are clocked by the same clock edge

° The combination logic block’s:

• Inputs are updated at each clock tick

• All outputs MUST be stable before the next clock tick

Clk

.

.

.

.

.

.

.

.

.

.

.

.
Combination Logic

cs 152 delay.28 ©DAP & SIK 1995

Critical Path & Cycle Time

° Critical path: the slowest path between any two storage devices

° Cycle time is a function of the critical path

° More specifically, the cycle time must be greater than:

• Clock-to-Q + Longest Path through the Combination Logic + Setup

Clk

.

.

.

.

.

.

.

.

.

.

.

.

cs 152 delay.29 ©DAP & SIK 1995

Clock Skew’s Effect on Cycle Time

° The worst case scenario for cycle time consideration:

• The input register sees CLK1

• The output register sees CLK2

° Cycle Time = CLK-to-Q + Longest Delay Path + Setup + Clock Skew

Clk1

Clk2 Clock Skew

Clk1 Clk2

.

.

.

.

.

.

.

.

.

.

.

.

cs 152 delay.30 ©DAP & SIK 1995

Tricks to Reduce Cycle Time

° Reduce the number of gate levels

° Pay attention to loading

° One gate driving many gates is a bad idea

° Avoid using a small gate to drive a long wire

° Use multiple stages to drive large load

A

B

C
D

A

B

C

D

INV4x

INV4x

Clarge

cs 152 delay.31 ©DAP & SIK 1995

How to Avoid Hold Time Violation?

° Hold time requirement:

• Input to register must NOT change immediately after the clock tick

° This is usually easy to meet in the “edge trigger” clocking scheme

° CLK-to-Q + Shortest Delay Path must be greater than Hold Time

Clk

.

.

.

.

.

.

.

.

.

.

.

.
Combination Logic

cs 152 delay.32 ©DAP & SIK 1995

Clock Skew’s Effect on Hold Time

° The worst case scenario for hold time consideration:

• The input register sees CLK2

• The output register sees CLK1

° (CLK-to-Q + Shortest Delay Path - Clock Skew) > Hold Time

Clk1

Clk2 Clock Skew

Clk2 Clk1

.

.

.

.

.

.

.

.

.

.

.

.
Combination Logic

cs 152 delay.33 ©DAP & SIK 1995

Summary

° Performance and Technology Trends

• Keep the design simple to take advantage of the latest technology

• CMOS inverter and CMOS logic gates

° Delay Modeling and Gate Characterization

• Delay = Internal Delay + (Load Dependent Delay x Output Load)

° Clocking Methodology and Timing Considerations

• Simplest clocking methodology

- All storage elements use the SAME clock edge

• Cycle Time = CLK-to-Q + Longest Delay Path + Setup + Clock Skew

• CLK-to-Q + Shortest Delay Path - Clock Skew < Hold Time

cs 152 delay.34 ©DAP & SIK 1995

To Get More Information

° A Classic Book that Started it All:

• Carver Mead and Lynn Conway, “Introduction to VLSI Systems,”
Addison-Wesley Publishing Company, October 1980.

° A Good VLSI Circuit Design Book

• Lance Glasser & Daniel Dobberpuhl, “The Design and Analysis of
VLSI Circuits,” Addison-Wesley Publishing Company, 1985.

- Mr. Dobberpuhl is responsible for the DEC Alpha chip design.

° A Book by Dean Hodges:

• David Hodges & Horace Jackson, “Analysis and Design of Digital
Integrated Circuits,” McGraw-Hill Book Company, 1983.

cs 152 design.1 ©DAP & SIK 1995

Computer Architecture and Engineering
Lecture 6: The Design Process & ALU Design

February 3, 1995

Dave Patterson (patterson@cs) and
Shing Kong (shing.kong@eng.sun.com)

Slides available on http://http.cs.berkeley.edu/~patterson

cs 152 design.2 ©DAP & SIK 1995

Recap of Last Lecture

° Performance and Technology Trends

• Keep the design simple to take advantage of the latest technology

• CMOS inverter and CMOS logic gates

° Delay Modeling and Gate Characterization

• Delay = Internal Delay + (Load Dependent Delay x Output Load)

° Clocking Methodology and Timing Considerations

• Simplest clocking methodology

- All storage elements use the SAME clock edge

• Cycle Time = CLK-to-Q + Longest Delay Path + Setup + Clock Skew

• CLK-to-Q + Shortest Delay Path - Clock Skew < Hold Time

cs 152 design.3 ©DAP & SIK 1995

Outline of Today’s Lecture

° Recap of Last Lecture and Introduction of Today’s Lecture (4 min.)

° An Overview of the Design Process (16 min.)

° Questions and Administrative Matters (5 min.)

° An Review of Binary Arithmetics (5 min.)

° Designing a Simple 4-bit ALU (20 min.)

° Questions and Break (5 min.)

° Other ALU Construction Techniques (5 min.)

° Keeping an On-line Design Notebook (20 min.)

cs 152 design.4 ©DAP & SIK 1995

The Design Process

"To Design Is To Represent"

Design activity yields description/representation of an object

-- Traditional craftsman does not distinguish between the concept-
 ualization and the artifact

-- Separation comes about because of complexity

-- The concept is captured in one or more representation languages

-- This process IS design

Design Begins With Requirements

-- Functional Capabilities: what it will do

-- Performance Characteristics: Speed, Power, Area, Cost, . . .

cs 152 design.5 ©DAP & SIK 1995

Design Process (cont.)

Design Finishes As Assembly

-- Design understood in terms of
 components and how they have
 been assembled

-- Top Down decomposition of
 complex functions (behaviors)
 into more primitive functions

-- bottom-up composition of primitive
 building blocks into more complex assemblies

CPU

Datapath Control

ALU Regs Shifter

Nand
Gate

Design is a "creative process," not a simple method

cs 152 design.6 ©DAP & SIK 1995

Design Refinement

Informal System Requirement

Initial Specification

Intermediate Specification

Final Architectural Description

Intermediate Specification of Implementation

Final Internal Specification

Physical Implementation

refinement
increasing level of detail

cs 152 design.7 ©DAP & SIK 1995

Design as Search

Design involves educated guesses and verification

-- Given the goals, how should these be prioritized?

-- Given alternative design pieces, which should be selected?

-- Given design space of components & assemblies, which part will yield
 the best solution?

Feasible (good) choices vs. Optimal choices

Problem A

Strategy 1 Strategy 2

SubProb 1 SubProb2 SubProb3

BB1 BB2 BB3 BBn

cs 152 design.8 ©DAP & SIK 1995

Design as Representation (example)

(1) Functional Specification

Inputs: 2 x 16 bit operands- A, B; 1 bit carry input- Cin.

Outputs: 1 x 16 bit result- S; 1 bit carry output- Co.

Operations: PASS, ADD (A plus B plus Cin), SUB (A minus B
 minus Cin), AND, XOR, OR, COMPARE (equality)

Performance: left unspecified for now!

(2) Block Diagram

Understand the data and control flows

ALU
A B

M

Cin
Co

S

16 16

16

3
mode/function

"VHDL Behavior"

"VHDL Entity"

cs 152 design.9 ©DAP & SIK 1995

Elements of the Design Process

° Divide and Conquer

• Formulate a solution in terms of simpler components.

• Design each of the components (subproblems)

° Generate and Test

• Given a collection of building blocks, look for ways of putting
them together that meets requirement

° Successive Refinement

• Solve "most" of the problem (i.e., ignore some constraints or
special cases), examine and correct shortcomings.

° Formulate High-Level Alternatives

• Articulate many strategies to "keep in mind" while pursuing any
one approach.

° Work on the Things you Know How to Do

• The unknown will become “obvious” as you make progress.

cs 152 design.10 ©DAP & SIK 1995

Summary of the Design Process

Hierarchical Design to manage complexity

Top Down vs. Bottom Up vs. Successive Refinement

Importance of Design Representations:

 Block Diagrams

 Decomposition into Bit Slices

 Truth Tables, K-Maps

 Circuit Diagrams

 Other Descriptions: state diagrams, timing diagrams, reg xfer, . . .

Optimization Criteria:

 Gate Count

 [Package Count]

Logic Levels

Fan-in/Fan-out
Power

top
down

bottom
up

Area
Delay

mux design
meets at TT

Cost Design timePin Out

cs 152 design.11 ©DAP & SIK 1995

Administrative Matters

° A new “tentative” schedule

• Good News: You will have more time to work on the project after
the 2nd mid-term

• Bad News: The 2nd mid-term is moved up one week.

° After the 2nd mid-terms, we will try to arrange some guest lecturers to
talk about some topics that are interesting

cs 152 design.12 ©DAP & SIK 1995

Introduction to Binary Numbers

° Consider a 4-bit binary number

°

°

°

°

° Examples:

• 3 + 2 = 5 3 + 3 = 6

BinaryBinaryDecimal

0 0000

1 0001

2 0010

3 0011

Decimal

4 0100

5 0101

6 0110

7 0111

0 0 1 1

0 0 1 0+

0 1 0 1

1

0 0 1 1

0 0 1 1+

0 1 1 0

1 1

cs 152 design.13 ©DAP & SIK 1995

Two’s Complement Representation

° 2’s complement representation of negative numbers

• Bitwise inverse and add 1

• The MSB is always “1” for negative number => sign bit

° Biggest 4-bit Binary Number: 7 Smallest 4-bit Binary Number: -8

2’s ComplementBinaryDecimal

0 0000

1 0001

2 0010

3 0011

0000

1111

1110

1101

Decimal

0

-1

-2

-3

Bitwise
Inverse

1111

1110

1101

1100

4 0100

5 0101

6 0110

7 0111

1100

1011

1010

1001

-4

-5

-6

-7

1011

1010

1001

1000

1000-8 01118 1000

“Illegal” Positive Number!

cs 152 design.14 ©DAP & SIK 1995

Two’s Complement Arithmetic

° Examples: 7 - 6 = 7 + (- 6) = 1 3 - 5 = 3 + (- 5) = -2

2’s ComplementBinaryDecimal

0 0000

1 0001

2 0010

3 0011

0000

1111

1110

1101

Decimal

0

-1

-2

-3

4 0100

5 0101

6 0110

7 0111

1100

1011

1010

1001

-4

-5

-6

-7

1000-8

0 1 1 1

1 0 1 0+

0 0 0 1

1

0 0 1 1

1 0 1 1+

1 1 1 0

1 111

cs 152 design.15 ©DAP & SIK 1995

Functional Specification of the ALU

° ALU Control Lines (ALUop) Function

• 000 And

• 001 Or

• 010 Add

• 110 Subtract

• 111 Set-on-less-than

A
L

U

N

N

N

A

B

Result

Overflow

Zero

3
ALUop

CarryOut

cs 152 design.16 ©DAP & SIK 1995

A One Bit ALU

° This 1-bit ALU will perform AND, OR, and ADD

A

B

1-bit
Full

Adder

CarryOut

CarryIn

M
ux

Result

cs 152 design.17 ©DAP & SIK 1995

A One-bit Full Adder

° This is also called a (3, 2) adder

° Half Adder: No CarryIn nor CarryOut

° Truth Table:

1-bit
Full

Adder

CarryOut

CarryIn

A

B
C

Inputs Outputs

CommentsA B CarryIn SumCarryOut

0 0 0 0 0 0 + 0 + 0 = 00

0 0 1 0 1 0 + 0 + 1 = 01

0 1 0 0 1 0 + 1 + 0 = 01

0 1 1 1 0 0 + 1 + 1 = 10

1 0 0 0 1 1 + 0 + 0 = 01

1 0 1 1 0 1 + 0 + 1 = 10

1 1 0 1 0 1 + 1 + 0 = 10

1 1 1 1 1 1 + 1 + 1 = 11

cs 152 design.18 ©DAP & SIK 1995

Logic Equation for CarryOut

° CarryOut = (!A & B & CarryIn) | (A & !B & CarryIn) | (A & B & !CarryIn)

 | (A & B & CarryIn)

° CarryOut = B & CarryIn | A & CarryIn | A & B

Inputs Outputs

CommentsA B CarryIn SumCarryOut

0 0 0 0 0 0 + 0 + 0 = 00

0 0 1 0 1 0 + 0 + 1 = 01

0 1 0 0 1 0 + 1 + 0 = 01

0 1 1 1 0 0 + 1 + 1 = 10

1 0 0 0 1 1 + 0 + 0 = 01

1 0 1 1 0 1 + 0 + 1 = 10

1 1 0 1 0 1 + 1 + 0 = 10

1 1 1 1 1 1 + 1 + 1 = 11

cs 152 design.19 ©DAP & SIK 1995

Logic Equation for Sum

° Sum = (!A & !B & CarryIn) | (!A & B & !CarryIn) | (A & !B & !CarryIn)

 | (A & B & CarryIn)

Inputs Outputs

CommentsA B CarryIn SumCarryOut

0 0 0 0 0 0 + 0 + 0 = 00

0 0 1 0 1 0 + 0 + 1 = 01

0 1 0 0 1 0 + 1 + 0 = 01

0 1 1 1 0 0 + 1 + 1 = 10

1 0 0 0 1 1 + 0 + 0 = 01

1 0 1 1 0 1 + 0 + 1 = 10

1 1 0 1 0 1 + 1 + 0 = 10

1 1 1 1 1 1 + 1 + 1 = 11

cs 152 design.20 ©DAP & SIK 1995

Logic Equation for Sum (continue)

° Sum = (!A & !B & CarryIn) | (!A & B & !CarryIn) | (A & !B & !CarryIn)

 | (A & B & CarryIn)

° Sum = A XOR B XOR CarryIn

° Truth Table for XOR:

X Y X XOR Y

0 0 0

0 1 1

1 0 1

1 1 0

cs 152 design.21 ©DAP & SIK 1995

Logic Diagrams for CarryOut and Sum

° CarryOut = B & CarryIn | A & CarryIn | A & B

° Sum = A XOR B XOR CarryIn

CarryIn

CarryOut

A

B

A

B

CarryIn

Sum

cs 152 design.22 ©DAP & SIK 1995

A 4-bit ALU

° 1-bit ALU 4-bit ALU

A

B

1-bit
Full

Adder

CarryOut

M
ux

CarryIn

Result

A0

B0

1-bit
ALU

Result0

CarryIn0

CarryOut0

A1

B1

1-bit
ALU

Result1

CarryIn1

CarryOut1

A2

B2

1-bit
ALU

Result2

CarryIn2

CarryOut2

A3

B3

1-bit
ALU

Result3

CarryIn3

CarryOut3

cs 152 design.23 ©DAP & SIK 1995

How About Subtraction?

° Keep in mind the followings:

• (A - B) is the that as: A + (-B)

• 2’s Complement: Take the inverse of every bit and add 1

° Bit-wise inverse of B is !B:

• A + !B + 1 = A + (!B + 1) = A + (-B) = A - B

“A
L

U
”

4

4

4

A

!B

Result

Zero

CarryIn

CarryOut

4
B

4

0
2x1 M

ux

Sel

Subtract

cs 152 design.24 ©DAP & SIK 1995

Overflow

° Examples: 7 + 3 = 10 but ... - 4 - 5 = - 9 but ...

2’s ComplementBinaryDecimal

0 0000

1 0001

2 0010

3 0011

0000

1111

1110

1101

Decimal

0

-1

-2

-3

4 0100

5 0101

6 0110

7 0111

1100

1011

1010

1001

-4

-5

-6

-7

1000-8

0 1 1 1

0 0 1 1+

1 0 1 0

1

1 1 0 0

1 0 1 1+

0 1 1 1

110

7

3

1

- 6

- 4

- 5

7

cs 152 design.25 ©DAP & SIK 1995

Overflow Detection

° Overflow: the result is too large (or too small) to represent properly

• Example: - 8 < = 4-bit binary number <= 7

° When adding operands with different signs, overflow cannot occur!

° Overflow occurs when adding:

• 2 positive numbers and the sum is negative

• 2 negative numbers and the sum is positive

° Homework exercise: Prove you can detect overflow by:

• Carry into MSB ! = Carry out of MSB

0 1 1 1

0 0 1 1+

1 0 1 0

1

1 1 0 0

1 0 1 1+

0 1 1 1

110

7

3

1

-6

- 4

- 5

7

0

cs 152 design.26 ©DAP & SIK 1995

Overflow Detection Logic

° Carry into MSB ! = Carry out of MSB

• For a N-bit ALU: Overflow = CarryIn[N - 1] XOR CarryOut[N - 1]

A0

B0

1-bit
ALU

Result0

CarryIn0

CarryOut0

A1

B1

1-bit
ALU

Result1

CarryIn1

CarryOut1

A2

B2

1-bit
ALU

Result2

CarryIn2

A3

B3

1-bit
ALU

Result3

CarryIn3

CarryOut3

Overflow

X Y X XOR Y

0 0 0

0 1 1

1 0 1

1 1 0

cs 152 design.27 ©DAP & SIK 1995

Zero Detection Logic

° Zero Detection Logic is just a one BIG NOT gate

• Any non-zero input to the NOR gate will cause its output to be zero

CarryIn0

A0

B0

1-bit
ALU

Result0

CarryOut0

A1

B1

1-bit
ALU

Result1
CarryIn1

CarryOut1

A2

B2

1-bit
ALU

Result2
CarryIn2

CarryOut2

A3

B3

1-bit
ALU

Result3
CarryIn3

CarryOut3

Zero

cs 152 design.28 ©DAP & SIK 1995

The Disadvantage of Ripple Carry

° The adder we just built is called a “Ripple Carry Adder”

• The carry bit may have to propagate from LSB to MSB

• Worst case delay for a N-bit adder: 2N-gate delay

A0

B0

1-bit
ALU

Result0

CarryOut0

A1

B1

1-bit
ALU

Result1

CarryIn1

CarryOut1

A2

B2

1-bit
ALU

Result2

CarryIn2

A3

B3

1-bit
ALU

Result3

CarryIn3

CarryOut3

CarryOut2

CarryIn0

CarryIn

CarryOut

A

B

cs 152 design.29 ©DAP & SIK 1995

Break

° 5-minute Break

cs 152 design.30 ©DAP & SIK 1995

Carry Select Header

° Consider building a 8-bit ALU

• Simple: connects two 4-bit ALUs in series

Result[3:0]A
L

U

4

4

4

A[3:0] CarryIn

B[3:0]

A
L

U

4

4

4

A[7:4]

Result[7:4]

CarryOut

B[7:4]

cs 152 design.31 ©DAP & SIK 1995

Carry Select Header (Continue)

° Consider building a 8-bit ALU

• Expensive but faster: uses three 4-bit ALUs

Result[3:0]A
L

U

4

4

4

A[3:0] CarryIn

B[3:0]

C4

4

X[7:4]A
L

U

4

4

A[7:4]

0

B[7:4]

C0

4

Y[7:4]A
L

U
4

4

A[7:4]
1

B[7:4]

C1

2 to 1 M
U

X

Sel
0

1

Result[7:4]

4

2 to 1 MUX0 1 Sel
C4

CarryOut

cs 152 design.32 ©DAP & SIK 1995

The Theory Behind Carry Lookahead

° Recalled: CarryOut = (B & CarryIn) | (A & CarryIn) | (A & B)

• Cin2 = Cout1 = (B1 & Cin1) | (A1 & Cin1) | (A1 & B1)

• Cin1 = Cout0 = (B0 & Cin0) | (A0 & Cin0) | (A0 & B0)

° Substituting Cin1 into Cin2:

• Cin2 = (A1 & A0 & B0) | (A1 & A0 & Cin0) | (A1 & B0 & Cin0) |
(B1 & A0 & B0) | (B1 & A0 & Cin0) | (B1 & A0 & Cin0) | (A1 & B1)

° Now define two new terms:

• Generate Carry at Bit i gi = Ai & Bi

• Propagate Carry via Bit i

C
in2

Cin0

A0B0

1-bit
ALUC

out0

A1B1

1-bit
ALU

C
in1

C
out1

Cin2

cs 152 design.33 ©DAP & SIK 1995

The Theory Behind Carry Lookahead (Continue)

° Using the two new terms we just defined:

• Generate Carry at Bit i gi = Ai & Bi

• Propagate Carry via Bit i pi = Ai or Bi

° We can rewrite:

• Cin1 = g0 | (p0 & Cin0)

• Cin2 = g1 | (p1 & g0) | (p1 & p0 & Cin0)

• Cin3 = g2 | (p2 & g1) | (p2 & p1 & g0) | (p2 & p1 & p0 & Cin0)

° Carry going into bit 3 is 1 if

• We generate a carry at bit 2 (g2)

• Or we generate a carry at bit 1 (g1) and
bit 2 allows it to propagate (p2 & g1)

• Or we generate a carry at bit 0 (g0) and
bit 1 as well as bit 2 allows it to propagate (p2 & p1 & g0)

• Or we have a carry input at bit 0 (Cin0) and
bit 0, 1, and 2 all allow it to propagate (p2 & p1 & p0 & Cin0)

cs 152 design.34 ©DAP & SIK 1995

A Partial Carry Lookahead Adder

° It is very expensive to build a “full” carry lookahead adder

• Just imagine the length of the equation for Cin31

° Common practices:

• Connects several N-bit Lookahead Adders to form a big adder

• Example: connects four 8-bit carry lookahead adders to form
a 32-bit partial carry lookahead adder

8-bit Carry
Lookahead

Adder

C0

8

88

Result[7:0]

B[7:0]A[7:0]

8-bit Carry
Lookahead

Adder

C8

8

88

Result[15:8]

B[15:8]A[15:8]

8-bit Carry
Lookahead

Adder

C16

8

88

Result[23:16]

B[23:16]A[23:16]

8-bit Carry
Lookahead

Adder

C24

8

88

Result[31:24]

B[31:24]A[31:24]

cs 152 design.35 ©DAP & SIK 1995

Why should you keep an design notebook?

° Keep track of the design decisions and the reasons behind them

• Otherwise, it will be hard to debug and/or refine the design

° Insights you have on certain aspect of the design

° Results of the different design & debug experiments

cs 152 design.36 ©DAP & SIK 1995

Why do we keep it on-line?

° You need to force yourself to take notes

• Open an widow and leave an editor running while you work

° Take advantage of the window system’s “cut and paste” features

° It is much easier to read your typing than your writing

cs 152 design.37 ©DAP & SIK 1995

How should you do it?

° Keep it simple

° Separate the entries by dates

° Index: write a one-line summary of what you did each day

cs 152 design.38 ©DAP & SIK 1995

On-line Notebook Example

° Refer to the handout

cs 152 design.39 ©DAP & SIK 1995

Summary

° An Overview of the Design Process

• Design is an iterative process-- successive refinement

• Do NOT wait until you know everything before you start

° An Introduction to Binary Arithmetics

• If you use 2’s complement representation, subtract is easy.

° ALU Design

• Designing a Simple 4-bit ALU

• Other ALU Construction Techniques

° On-line Design Notebook

• Open a window and keep an editor running while you work

• Refer to the handout as an example

cs 152 design.40 ©DAP & SIK 1995

To Get More Information

° Chapter 4 of your text book:

• David Patterson & John Hennessy, “Computer Organization &
Design,” Morgan Kaufmann Publishers, 1994.

° A book I really like:

• David Winkel & Franklin Prosser, “The Art of Digital Design: An
Introduction to Top-Down Design,” Prentice-Hall, Inc., 1980.

° My master thesis has a chapter on carry lookahead adder design:

• Shing Kong, “Some Design Techniques for High Performance MOS
Circuits,” Master Report, EECS Department, UC Berkeley, 1985.

cs 152 l7 ALU.1 ©DAP & SIK 1995

Computer Architecture and Engineering
Lecture 7: ALU Design

February 8, 1995

Dave Patterson (patterson@cs) and
Shing Kong (shing.kong@eng.sun.com)

Slides available on http://http.cs.berkeley.edu/~patterson

cs 152 l7 ALU.2 ©DAP & SIK 1995

Review: A One Bit ALU

° This 1-bit ALU will perform AND, OR, and ADD

A

B

1-bit
Full

Adder

CarryOut

CarryIn

M
ux

Result

cs 152 l7 ALU.3 ©DAP & SIK 1995

Review: Functional Specification of the ALU

° ALU Control Lines (ALUop) Function

• 000 And

• 001 Or

• 010 Add

• 110 Subtract

• 111 Set-on-less-than

A
L

U

N

N

N

A

B

Result

Overflow

Zero

3
ALUop

CarryOut

cs 152 l7 ALU.4 ©DAP & SIK 1995

Recap of Last Lecture

° An Overview of the Design Process

• Design is an iterative process-- successive refinement

• Do NOT wait until you know everything before you start

° An Introduction to Binary Arithmetics

• If you use 2’s complement representation, subtract is easy.

° ALU Design

• Designing a Simple 4-bit ALU

• Other ALU Construction Techniques

° On-line Design Notebook

• Open a window and keep an editor running while you work

• Refer to the handout as an example

cs 152 l7 ALU.5 ©DAP & SIK 1995

Outline of Today’s Lecture

° Recap of Last Lecture and Introduction of Today’s Lecture (2 min.)

° Deriving the ALU from the Instruction Set & Shift (25 min.)

° Questions and Administrative Matters (3 min.)

° Multiply (20 min.)

° Questions and Break (5 min.)

° More Multiply (25 min.)

cs 152 l7 ALU.6 ©DAP & SIK 1995

Deriving requirements of ALU

° Start with instruction set architecture: must be able to do all operations
in ISA

° Tradeoffs of cost and speed based on frequency of occurrence,
hardware budget

° MIPS ISA

cs 152 l7 ALU.7 ©DAP & SIK 1995

MIPS arithmetic instructions

Instruction Example Meaning Comments

add add $1,$2,$3 $1 = $2 + $3 3 operands; exception possible
subtract sub $1,$2,$3 $1 = $2 – $3 3 operands; exception possible
add immediate addi $1,$2,100 $1 = $2 + 100 + constant; exception possible

add unsigned addu $1,$2,$3 $1 = $2 + $3 3 operands; no exceptions
subtract unsigned subu $1,$2,$3 $1 = $2 – $3 3 operands; no exceptions
add imm. unsign. addiu $1,$2,100 $1 = $2 + 100 + constant; no exceptions
multiply mult $2,$3 Hi, Lo = $2 x $3 64-bit signed product
multiply unsigned multu$2,$3 Hi, Lo = $2 x $3 64-bit unsigned product
divide div $2,$3 Lo = $2 ÷ $3, Lo = quotient, Hi = remainder

 Hi = $2 mod $3
divide unsigned divu $2,$3 Lo = $2 ÷ $3, Unsigned quotient &

remainder
 Hi = $2 mod $3

Move from Hi mfhi $1 $1 = Hi Used to get copy of Hi
Move from Lo mflo $1 $1 = Lo Used to get copy of Lo

cs 152 l7 ALU.8 ©DAP & SIK 1995

MIPS logical instructions
Instruction Example Meaning Comment

and and $1,$2,$3 $1 = $2 & $3 3 reg. operands; Logical AND

or or $1,$2,$3 $1 = $2 | $3 3 reg. operands; Logical OR

xor xor $1,$2,$3 $1 = $2 ⊕ $3 3 reg. operands; Logical XOR

nor nor $1,$2,$3 $1 = ~($2 |$3) 3 reg. operands; Logical NOR

and immediate andi $1,$2,10 $1 = $2 & 10 Logical AND reg, constant

or immediate ori $1,$2,10 $1 = $2 | 10 Logical OR reg, constant

xor immediate xori $1, $2,10 $1 = ~$2 &~10 Logical XOR reg, constant

shift left logical sll $1,$2,10 $1 = $2 << 10 Shift left by constant

shift right logical srl $1,$2,10 $1 = $2 >> 10 Shift right by constant

shift right arithm. sra $1,$2,10 $1 = $2 >> 10 Shift right (sign extend)

shift left logical sllv $1,$2,$3 $1 = $2 << $3 Shift left by variable

shift right logical srlv $1,$2, $3 $1 = $2 >> $3 Shift right by variable

shift right arithm. srav $1,$2, $3 $1 = $2 >> $3 Shift right arith. by variable

cs 152 l7 ALU.9 ©DAP & SIK 1995

Compare and Branch

° Compare and Branch

• BEQ rs, rt, offset if R[rs] == R[rt] then PC-relative branch

• BNE rs, rt, offset <>

° Compare to zero and Branch

• BLEZ rs, offset if R[rs] <= 0 then PC-relative branch

• BGTZ rs, offset >

• BLT <

• BGEZ >=

• BLTZAL rs, offset if R[rs] < 0 then branch and link (into R 31)

• BGEZAL >=

cs 152 l7 ALU.10 ©DAP & SIK 1995

MIPS ALU requirements

° Add, AddU, Sub, SubU, AddI, AddIU
=> 2’s complement adder with overflow detection & inverter

° SLTI, SLTIU (set less than)
=> 2’s complement adder with inverter, check sign bit of result

° BEQ, BNE (branch on equal or not equal)
=> 2’s complement adder with inverter, check if result = 0

° And, Or, AndI, OrI
=> Logical AND, logical OR

° ALU from last lecture supports these ops

cs 152 l7 ALU.11 ©DAP & SIK 1995

Additional MIPS ALU requirements

° Xor, Nor, XorI
=> Logical XOR, logical NOR or use 2 steps: (A OR B) XOR 1111....1111

° Sll, Srl, Sra
=> Need left shift, right shift, right shift arithmetic by 0 to 31 bits

° Mult, MultU, Div, DivU
=> Need 32-bit multiply and divide, signed and unsigned

cs 152 l7 ALU.12 ©DAP & SIK 1995

Add XOR to ALU

° Expand Multiplexor

A

B

1-bit
Full

Adder

CarryOut

CarryIn

M
ux

Result

cs 152 l7 ALU.13 ©DAP & SIK 1995

Shifters

Three different kinds:

 logical-- value shifted in is always "0"

 arithmetic-- on right shifts, sign extend

 rotating-- shifted out bits are wrapped around (not in MIPS)

msb lsb"0" "0"

msb lsb "0"

msb lsb msb lsb
left right

Note: these are single bit shifts. A given instruction might request
 0 to 32 bits to be shifted!

cs 152 l7 ALU.14 ©DAP & SIK 1995

Multiplexor/Shifter

0
1
0
1
0
1
0
1

Q3
0
Q2
Q3
Q1
Q2
Q0
Q1

SHR/
don't
shift

D3

D2

D1

D0

SHR:
0
1
2
3
0
1
2
3

Q3
0
0
0
Q2
Q3
0
0

0
1
2
3

Q0
Q1
Q2
Q3

D3

D2

D0

shift amount
 (0,1,2,3)

4 x 4:1 Mux
1 stage

SHR 0, 1, 2, 3 bits:

0
1
0
1
0
1
0
1

Q3
0
Q2
Q3
Q1
Q2
Q0
Q1

0
1
0
1
0
1
0
1

0

0

x 1 x 2

D3

D2

D1

D0

8 x 2:1 Mux
2 stages

How do arithmetic shift right?

(5 inputs)

(7 inputs)

cs 152 l7 ALU.15 ©DAP & SIK 1995

General Scheme

S 0

S 1

S 2

Right-to-left connections support Rotate (not in MIPS but found in others)

cs 152 l7 ALU.16 ©DAP & SIK 1995

32 Bit Shifter

Using this scheme for 32 bit data with 0-31 bit shifts would result in

5 stages of mux's (x1, x2, x4, x8, x16) if 2:1 are used

 32 bits x 5 stages = 160 2:1 mux's!

3 stages of mux's (x4, x4, x2) if 2 levels of 4:1 and 1 level of 2:1 used

 32 x 4:1 + 32 x 4:1 + 32 x 2:1

2 stages of mux's (x8, x4) if 1 level of 8:1 and 1 level of 4:1 used

 32 x 8:1 + 32 x 4:1

cs 152 l7 ALU.17 ©DAP & SIK 1995

Multibit Shifts (continued)

Mixed strategy, multiple control loops with more than one bit per loop

 31 bit shift:
 31 iterations with a 0,1 position shifter
 11 iterations with a 0,1,2,3 position shifter
 5 iterations with a 0,1,2,3,4,5,6,7 position shifter
 3 iterations with an 0-15 position shifter

Fortunately, most shifts are relatively short (0-3 often implemented)

Extra Complexity: can only do shift right so far

cs 152 l7 ALU.18 ©DAP & SIK 1995

Funnel Shifter

XY

R

° Logical: Y = 0

° Arithmetic?

° Rotate?

° Left shifts?

Instead Extract 32 bits of 64.

Shift Right

Shift Right

32 32

32

cs 152 l7 ALU.19 ©DAP & SIK 1995

Barrel Shifter

Technology-dependent solutions:

D3

D2

D1

D0

Q6

Q5

Q4

Q3 Q2 Q1 Q0

SR0SR1SR2SR3

cs 152 l7 ALU.20 ©DAP & SIK 1995

Administrative Matters

° Video tapes of lectures available for viewing in 205 McLaughlin,
Mon. to Fri. 9 AM to 5 PM; Wed & Fri. 6 PM to 10 PM

° 1st Midterm 2 weeks, Feb. 22; 5 PM to 8 PM for 1.5 hour test in Sibley
Auditorium;
2 hand drawn pieces of paper
(will be able to bring to second midterm too)

° LaVal’s Afterwards to meet students, TAs, profs

° Other topics?

cs 152 l7 ALU.21 ©DAP & SIK 1995

MULTIPLY

° Paper and pencil example:

 Multiplicand 1000
Multiplier x 1001

 1000
 0000
 0000
 1000

Product 1001000

° m bits x n bits = m+n bit product

° Binary makes it easy:

• 0 => place 0 (0 x multiplicand)

• 1 => place 0 (1 x multiplicand)

° 3 versions of multiply hardware & algorithm: successive refinement

cs 152 l7 ALU.22 ©DAP & SIK 1995

MULTIPLY HARDWARE Version 1

° 64-bit Multiplicand reg, 64-bit ALU, 64-bit Product reg,
32-bit multiplier reg

Product

Multiplier

Multiplicand

64-bit ALU

Shift Left

Shift Right

Write Control

32 bits

64 bits

64 bits

cs 152 l7 ALU.23 ©DAP & SIK 1995

Multiply Algorithm Version 1
Multiplier Multiplicand Product
0011 0000 0010 0000 0000

3. Shift the Multiplier register right 1 bit.

Done

Yes: 32 repetitions

2. Shift the Multiplicand register left 1 bit.

No: < 32 repetitions

1.Test
Multiplier0

Multiplier0 = 0Multiplier0 = 1

1a. Add multiplicand to product and place the
result in Product register.

32nd repetition?

Start

cs 152 l7 ALU.24 ©DAP & SIK 1995

Observations on Multiply Version 1

° 1 clock per cycle => ≈ 100 clocks per multiply

• Ratio of multiply to add 5:1 to 100:1

° 1/2 bits in multiplicand always 0
=> 64-bit adder is wasted

° 0’s inserted in left of multiplicand as shifted
=> least significant bits of product never changed once formed

° Instead of shifting multiplicand to left, shift product to right?

cs 152 l7 ALU.25 ©DAP & SIK 1995

Multiplier
Shift Right

Write Control
Shift Right

32-bit ALU

Multiplicand

Product

32 bits

32 bits

64 bits

MULTIPLY HARDWARE Version 2

° 32-bit Multiplicand reg, 32 -bit ALU, 64-bit Product reg,
32-bit Multiplier reg

cs 152 l7 ALU.26 ©DAP & SIK 1995

3. Shift the Multiplier register right 1 bit.

32nd repetition?

Done

Yes: 32 repetitions

2. Shift the Product register right 1 bit.

No: < 32 repetitions

1. Test Multiplier0 Multiplier0 = 0Multiplier0 = 1

1a. Add multiplicand to the left half of the
product and place the result in the left half

of the Product register.

StartMultiply Algorithm Version 2
Multiplier Multiplicand Product
0011 0010 0000 0000

cs 152 l7 ALU.27 ©DAP & SIK 1995

Observations on Multiply Version 2

° Product register wastes space that exactly matches size of multiplier
=> combine Multiplier register and Product register

cs 152 l7 ALU.28 ©DAP & SIK 1995

Write Control
Shift Right

32-bit ALU

Multiplicand

Product

32 bits

64 bits

MULTIPLY HARDWARE Version 3

° 32-bit Multiplicand reg, 32 -bit ALU, 64-bit Product reg,
(0-bit Multiplier reg)

cs 152 l7 ALU.29 ©DAP & SIK 1995

32nd repetition?

Done

Yes: 32 repetitions

2. Shift the Product register right 1 bit.

No: < 32 repetitions

1. Test Product0
Product0 = 0Product0 = 1

1a. Add multiplicand to the left half of the
product and place the result in the left half

of the Product register.

StartMultiply Algorithm Version 3
Multiplicand Product
0010 0000 0011

cs 152 l7 ALU.30 ©DAP & SIK 1995

Observations on Multiply Version 3

° 2 steps per bit because Multiplier & Product combined

° MIPS registers Hi and Lo are left and right half of Product

° Gives us MIPS instruction MultU

° What about signed multiplication?

• easiest solution is to make both positive & remember whether to
complement product when done (leave out the sign bit, run for 31
steps)

• Booth’s Algorithm is more elegant way to multiply signed numbers
using same hardware as before

cs 152 l7 ALU.31 ©DAP & SIK 1995

Motivation for Booth’s Algorithm
° Example 2 x 6 = 0010 x 0110:

 0010
 x 0110
 + 0000 shift (0 in multiplier)
 + 0010 add (1 in multiplier)
 + 0100 add (1 in multiplier)
 + 0000 shift (0 in multiplier)
 00001100

° ALU with add or subtract gets same result in more than one way:
6 = – 2 + 8 , or
0110 = – 0010+ 1000

° Replace a string of 1s in multiplier with an initial subtract when we first
see a one and then later add for the bit after the last one. For example

 0010
 x 0110
 + 0000 shift (0 in multiplier)
 – 0010 sub (first 1 in multiplier)
 + 0000 shift (middle of string of 1s)
 + 0010 add (prior step had last 1)
 00001100

cs 152 l7 ALU.32 ©DAP & SIK 1995

Booth’s Algorithm Insight

Current Bit Bit to the Right Explanation Example

1 0 Beginning of a run of 1s 0001111000

1 1 Middle of a run of 1s 0001111000

0 1 End of a run of 1s 0001111000

0 0 Middle of a run of 0s 0001111000

Originally for Speed since shift faster than add for his machine

0 1 1 1 1 0
beginning of runend of run

middle of run

cs 152 l7 ALU.33 ©DAP & SIK 1995

Booth’s Algorithm

1. Depending on the current and previous bits, do one of the following:
00: a. Middle of a string of 0s, so no arithmetic operations.
01: b. End of a string of 1s, so add the multiplicand to the left

 half of the product.
10: c. Beginning of a string of 1s, so subtract the multiplicand

 from the left half of the product.
11: d. Middle of a string of 1s, so no arithmetic operation.

2.As in the previous algorithm, shift the Product register right (arith) 1 bit.

Multiplicand Product (2 x 3)
0010 0000 0011 0

Multiplicand Product (2 x -3)
0010 0000 1101 0

cs 152 l7 ALU.34 ©DAP & SIK 1995

Summary

° Instruction Set drives the ALU design

° Shifter: success refinement from 1/bit at a time shift register to barrel
shifter

° Multiply: successive refinement to see final design

• 32-bit Adder, 64-bit shift register, 32-bit Multiplicand Register

• Booth’s algorithm to handle signed multiplies

° There are algorithms that calculate many bits of multiply per cycle
(see exercises 4.36 to 4.39 in COD)

° What’s Missing from MIPS is Divide & Floating Point Arithmetic: Next
time the Pentium Bug

cs 152 datapath.1 ©DAP & SIK 1995

February 15, 1995

Dave Patterson (patterson@cs) and
Shing Kong (shing.kong@eng.sun.com)

Slides available on http://http.cs.berkeley.edu/~patterson

CS152
Computer Architecture and Engineering

Lecture 9: Designing a Single Cycle Datapath

cs 152 datapath.2 ©DAP & SIK 1995

Recap of the On-line Design Note Book

° Top 10 things to put in your on-line design notebook

• 10. Start: type “date” and copy & paste into your notebook.

• 9. What is the goal/objective of today?

• 8. Description of any problem: what did you see? what did you do?

• 7. Keep track of the time whenever you do a new “compile.”

• 6. Procedures for testing and running experiments.

• 5. Outputs of tests and experiments.

• 4. Insights and thoughts you have while you work.

• 3. Copy & pate headers of important emails.

• 2.. Last thing of the day: One line summary => Notebook Index.

• 1. Finish: type “date” and copy & paste into your notebook.

cs 152 datapath.3 ©DAP & SIK 1995

Outline of Today’s Lecture

° Recap and Introduction (5 minutes)

° Where are we with respect to the BIG picture? (15 minutes)

° Questions and Administrative Matters (5 minutes)

° The Steps of Designing a Processor (10 minutes)

° Datapath and timing for Reg-Reg Operations (15 minutes)

° Break (5 minutes)

° Datapath for Logical Operations with Immediate (5 minutes)

° Datapath for Load and Store Operations (10 minutes)

° Datapath for Branch and Jump Operations (10 minutes)

cs 152 datapath.4 ©DAP & SIK 1995

The Big Picture: Where are We Now?

° The Five Classic Components of a Computer

° Today’s Topic: Datapath Design

Control

Datapath

Memory

Processor

Input

Output

cs 152 datapath.5 ©DAP & SIK 1995

The Big Picture: The Performance Perspective

° Performance of a machine was determined by:

• Instruction count

• Clock cycle time

• Clock cycles per instruction

° Processor design (datapath and control) will determine:

• Clock cycle time

• Clock cycles per instruction

° In the next two lectures:

• Single cycle processor:

- Advantage: One clock cycle per instruction

- Disadvantage: long cycle time

cs 152 datapath.6 ©DAP & SIK 1995

The MIPS Instruction Formats

° All MIPS instructions are 32 bits long. The three instruction formats:

• R-type

• I-type

• J-type

° The different fields are:

• op: operation of the instruction

• rs, rt, rd: the source and destination register specifiers

• shamt: shift amount

• funct: selects the variant of the operation in the “op” field

• address / immediate: address offset or immediate value

• target address: target address of the jump instruction

op target address

02631

6 bits 26 bits

op rs rt rd shamt funct

061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

cs 152 datapath.7 ©DAP & SIK 1995

The MIPS Subset

° ADD and subtract

• add rd, rs, rt

• sub rd, rs, rt

° OR Immediate:

• ori rt, rs, imm16

° LOAD and STORE

• lw rt, rs, imm16

• sw rt, rs, imm16

° BRANCH:

• beq rs, rt, imm16

° JUMP:

• j target op target address

02631

6 bits 26 bits

op rs rt rd shamt funct

061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

cs 152 datapath.8 ©DAP & SIK 1995

An Abstract View of the Implementation

Clk

5

Rw Ra Rb

32 32-bit
Registers

Rd

A
L

U

Clk

Data In

DataOut

Data
Address

Ideal
Data

Memory

Instruction

Instruction Address

Ideal
Instruction

Memory

Clk
PC

5
Rs

5
Rt

16
Imm

32

32
3232

cs 152 datapath.9 ©DAP & SIK 1995

Clocking Methodology

° All storage elements are clocked by the same clock edge

° Cycle Time = CLK-to-Q + Longest Delay Path + Setup + Clock Skew

° (CLK-to-Q + Shortest Delay Path - Clock Skew) > Hold Time

Clk

Don’t Care

Setup Hold

.

.

.

.

.

.

.

.

.

.

.

.

Setup Hold

cs 152 datapath.10 ©DAP & SIK 1995

An Abstract View of the Critical Path
° Register file and ideal memory:

• The CLK input is a factor ONLY during write operation

• During read operation, behave as combinational logic:

- Address valid => Output valid after “access time.”

Clk

5

Rw Ra Rb

32 32-bit
Registers

Rd

A
L

U

Clk

Data In

DataOut

Data
Address

Ideal
Data

Memory

Instruction

Instruction Address

Ideal
Instruction

Memory

Clk
PC

5
Rs

5
Rt

16
Imm

32

32
3232

Critical Path (Load Operation) =
 PC’s Clk-to-Q +
 Instruction Memory’s Access Time +
 Register File’s Access Time +
 ALU to Perform a 32-bit Add +
 Data Memory Access Time +
 Setup Time for Register File Write +
 Clock Skew

cs 152 datapath.11 ©DAP & SIK 1995

Questions and Administrative Matters (5 Minutes)

° Discussion Section Room Change for Thursday:

• Before 109 Morgan => New 373 Soda

• Effective: 2/16/1995, Thursday

° One more time:

• All teams must be at least four people

• We want you to learn to work in a big team

cs 152 datapath.12 ©DAP & SIK 1995

The Steps of Designing a Processor

° Instruction Set Architecture => Register Transfer Language

° Register Transfer Language =>

• Datapath components

• Datapath interconnect

° Datapath components => Control signals

° Control signals => Control logic

cs 152 datapath.13 ©DAP & SIK 1995

RTL: The ADD Instruction

° add rd, rs, rt

• mem[PC] Fetch the instruction from memory

• R[rd] <- R[rs] + R[rt] The ADD operation

• PC <- PC + 4 Calculate the next instruction’s address

cs 152 datapath.14 ©DAP & SIK 1995

RTL: The Load Instruction

° lw rt, rs, imm16

• mem[PC] Fetch the instruction from memory

• Addr <- R[rs] + SignExt(imm16)

 Calculate the memory address

• R[rt] <- Mem[Addr] Load the data into the register

• PC <- PC + 4 Calculate the next instruction’s address

cs 152 datapath.15 ©DAP & SIK 1995

Combinational Logic Elements

° Adder

° MUX

° ALU

32

32

A

B

32
Sum

Carry

32

32

A

B

32
Result

Zero

OP

32
A

B
32

Y
32

A
dder

M
U

X
A

L
U

CarryIn

cs 152 datapath.16 ©DAP & SIK 1995

Storage Element: Register

° Register

• Similar to the D Flip Flop except

- N-bit input and output

- Write Enable input

• Write Enable:

- 0: Data Out will not change

- 1: Data Out will become Data In Clk

Data In

Write Enable

N N

Data Out

cs 152 datapath.17 ©DAP & SIK 1995

Storage Element: Register File

° Register File consists of 32 registers:

• Two 32-bit output busses:

 busA and busB

• One 32-bit input bus: busW

° Register is selected by:

• RA selects the register to put on busA

• RB selects the register to put on busB

• RW selects the register to be written
via busW when Write Enable is 1

° Clock input (CLK)

• The CLK input is a factor ONLY during write operation

• During read operation, behaves as a combinational logic block:

- RA or RB valid => busA or busB valid after “access time.”

Clk

busW

Write Enable

32

32

busA

32

busB

5 5 5

RW RA RB

32 32-bit
Registers

cs 152 datapath.18 ©DAP & SIK 1995

Storage Element: Idealized Memory

° Memory (idealized)

• One input bus: Data In

• One output bus: Data Out

° Memory word is selected by:

• Address selects the word to put on Data Out

• Write Enable = 1: address selects the memory
memory word to be written via the Data In bus

° Clock input (CLK)

• The CLK input is a factor ONLY during write operation

• During read operation, behaves as a combinational logic block:

- Address valid => Data Out valid after “access time.”

Clk

Data In

Write Enable

32 32

DataOut

Address

cs 152 datapath.19 ©DAP & SIK 1995

Overview of the Instruction Fetch Unit

° The common RTL operations

• Fetch the Instruction: mem[PC]

• Update the program counter:

- Sequential Code: PC <- PC + 4

- Branch and Jump PC <- “something else”

32

Instruction Word
Address

Instruction
Memory

PCClk

Next Address
Logic

cs 152 datapath.20 ©DAP & SIK 1995

RTL: The ADD Instruction

° add rd, rs, rt

• mem[PC] Fetch the instruction from memory

• R[rd] <- R[rs] + R[rt] The actual operation

• PC <- PC + 4 Calculate the next instruction’s address

op rs rt rd shamt funct

061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

cs 152 datapath.21 ©DAP & SIK 1995

RTL: The Subtract Instruction

° sub rd, rs, rt

• mem[PC] Fetch the instruction from memory

• R[rd] <- R[rs] - R[rt] The actual operation

• PC <- PC + 4 Calculate the next instruction’s address

op rs rt rd shamt funct

061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

cs 152 datapath.22 ©DAP & SIK 1995

Datapath for Register-Register Operations

° R[rd] <- R[rs] op R[rt] Example: add rd, rs, rt

• Ra, Rb, and Rw comes from instruction’s rs, rt, and rd fields

• ALUctr and RegWr: control logic after decoding the instruction

32

Result

ALUctr

Clk

busW

RegWr

32

32

busA

32

busB

5 5 5

Rw Ra Rb

32 32-bit
Registers

Rs Rt

A
L

U

op rs rt rd shamt funct

061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

cs 152 datapath.23 ©DAP & SIK 1995

Register-Register Timing

32
Result

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

5 5 5

Rw Ra Rb
32 32-bit
Registers

Rs Rt

Rd

A
L

U

Clk

PC

Rs, Rt, Rd,
Op, Func

Clk-to-Q

ALUctr

Instruction Memory Access Time

Old Value New Value

RegWr Old Value New Value

Delay through Control Logic

busA, B
Register File Access Time

Old Value New Value

busW
ALU Delay

Old Value New Value

Old Value New Value

New ValueOld Value

Register Write
Occurs Here

cs 152 datapath.24 ©DAP & SIK 1995

Break (5 Minutes)

cs 152 datapath.25 ©DAP & SIK 1995

RTL: The OR Immediate Instruction

° ori rt, rs, imm16

• mem[PC] Fetch the instruction from memory

• R[rt] <- R[rs] or ZeroExt(imm16)

 The OR operation

• PC <- PC + 4 Calculate the next instruction’s address

immediate

016 1531

16 bits16 bits

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

cs 152 datapath.26 ©DAP & SIK 1995

Datapath for Logical Operations with Immediate

° R[rt] <- R[rs] op ZeroExt[imm16]] Example: ori rt, rs, imm16

32

Result

ALUctr

Clk

busW

RegWr

32

32

busA

32

busB

5 5 5

Rw Ra Rb

32 32-bit
Registers

Rs

Rt

Don’t Care
(Rt)

Rd
RegDst

Z
eroE

xt

M
ux

Mux

3216
imm16

ALUSrc

A
L

U

11

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits rd

cs 152 datapath.27 ©DAP & SIK 1995

RTL: The Load Instruction

° lw rt, rs, imm16

• mem[PC] Fetch the instruction from memory

• Addr <- R[rs] + SignExt(imm16)

 Calculate the memory address

R[rt] <- Mem[Addr] Load the data into the register

• PC <- PC + 4 Calculate the next instruction’s address

immediate

016 1531

16 bits16 bits

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

016 1531

immediate

16 bits16 bits

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

cs 152 datapath.28 ©DAP & SIK 1995

Datapath for Load Operations

° R[rt] <- Mem[R[rs] + SignExt[imm16]] Example: lw rt, rs, imm16

11

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits rd

32

ALUctr

Clk

busW

RegWr

32

32

busA

32

busB

5 5 5

Rw Ra Rb

32 32-bit
Registers

Rs

Rt

Don’t Care
(Rt)

Rd

RegDst

E
xtender

M
ux

Mux

32
16

imm16

ALUSrc

ExtOp

M
ux

MemtoReg

Clk

Data In
WrEn

32

Adr

Data
Memory

A
L

U

MemWr

cs 152 datapath.29 ©DAP & SIK 1995

RTL: The Store Instruction

° sw rt, rs, imm16

• mem[PC] Fetch the instruction from memory

• Addr <- R[rs] + SignExt(imm16)

 Calculate the memory address

• Mem[Addr] <- R[rt] Store the register into memory

• PC <- PC + 4 Calculate the next instruction’s address

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

cs 152 datapath.30 ©DAP & SIK 1995

Datapath for Store Operations

° Mem[R[rs] + SignExt[imm16] <- R[rt]] Example: sw rt, rs, imm16

32

ALUctr

Clk

busW

RegWr

32

32

busA

32
busB

55 5

Rw Ra Rb

32 32-bit
Registers

Rs

Rt

Rt

Rd

RegDst

E
xtender

M
ux

Mux

3216
imm16

ALUSrc

ExtOp

M
ux

MemtoReg

Clk

Data In
WrEn

32

Adr

Data
Memory

32

MemWr

A
L

U

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

cs 152 datapath.31 ©DAP & SIK 1995

RTL: The Branch Instruction

° beq rs, rt, imm16

• mem[PC] Fetch the instruction from memory

• Cond <- R[rs] - R[rt] Calculate the branch condition

• if (COND eq 0) Calculate the next instruction’s address

- PC <- PC + 4 + (SignExt(imm16) x 4)

• else

- PC <- PC + 4

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

cs 152 datapath.32 ©DAP & SIK 1995

Datapath for Branch Operations

° beq rs, rt, imm16 We need to compare Rs and Rt!

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

ALUctr

Clk

busW

RegWr

32

32

busA

32

busB

5 5 5

Rw Ra Rb

32 32-bit
Registers

Rs

Rt

Rt

Rd

RegDst

E
xtender

M
ux

Mux

32
16

imm16

ALUSrc

A
L

U

PC
Clk

Next Address
Logic16

imm16

Branch

To Instruction
Memory

Zero

cs 152 datapath.33 ©DAP & SIK 1995

Binary Arithmetics for the Next Address

° In theory, the PC is a 32-bit byte address into the instruction memory:

• Sequential operation: PC<31:0> = PC<31:0> + 4

• Branch operation: PC<31:0> = PC<31:0> + 4 + SignExt[Imm16] * 4

° The magic number “4” always comes up because:

• The 32-bit PC is a byte address

• And all our instructions are 4 bytes (32 bits) long

° In other words:

• The 2 LSBs of the 32-bit PC are always zeros

• There is no reason to have hardware to keep the 2 LSBs

° In practice, we can simply the hardware by using a 30-bit PC<31:2>:

• Sequential operation: PC<31:2> = PC<31:2> + 1

• Branch operation: PC<31:2> = PC<31:2> + 1 + SignExt[Imm16]

• In either case: Instruction Memory Address = PC<31:2> concat “00”

cs 152 datapath.34 ©DAP & SIK 1995

Next Address Logic: Expensive and Fast Solution

° Using a 30-bit PC:

• Sequential operation: PC<31:2> = PC<31:2> + 1

• Branch operation: PC<31:2> = PC<31:2> + 1 + SignExt[Imm16]

• In either case: Instruction Memory Address = PC<31:2> concat “00”

30

SignE
xt

30

16
imm16

M
ux

0

1

A
dder

“1”

P
C

Clk

A
dder

30

30

Branch Zero

Addr<31:2>

Instruction
Memory

Addr<1:0>
“00”

32

Instruction<31:0>Instruction<15:0>

30

cs 152 datapath.35 ©DAP & SIK 1995

Next Address Logic: Cheap and Slow Solution

° Why is this slow?

• Cannot start the address add until Zero (output of ALU) is valid

° Does it matter that this is slow in the overall scheme of things?

• Probably not here. Critical path is the load operation.

30

SignE
xt 3016

imm16

M
ux

0

1
A

dder

“0”

P
C

Clk

30

Branch Zero

Addr<31:2>

Instruction
Memory

Addr<1:0>
“00”

32

Instruction<31:0>

30

“1”

Carry In

Instruction<15:0>

cs 152 datapath.36 ©DAP & SIK 1995

RTL: The Jump Instruction

° j target

• mem[PC] Fetch the instruction from memory

• PC<31:2> <- PC<31:29> concat target<25:0>

Calculate the next instruction’s address

op target address

02631

6 bits 26 bits

cs 152 datapath.37 ©DAP & SIK 1995

Instruction Fetch Unit

30

SignE
xt

30

16
imm16

M
ux

0

1

A
dder

“1”

P
C

Clk

A
dder

30

30

Branch Zero

“00”

Addr<31:2>

Instruction
Memory

Addr<1:0>

32
M

ux

1

0

26

4

PC<31:28>

Target
30

° j target

• PC<31:2> <- PC<31:29> concat target<25:0>

Jump

Instruction<15:0>

Instruction<31:0>

30

Instruction<25:0>

cs 152 datapath.38 ©DAP & SIK 1995

Putting it All Together: A Single Cycle Datapath

32

ALUctr

Clk

busW

RegWr

32

32

busA

32
busB

55 5

Rw Ra Rb

32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xtender

M
ux

Mux

3216
imm16

ALUSrc

ExtOp

M
ux

MemtoReg

Clk

Data In
WrEn

32

Adr

Data
Memory

32

MemWr

A
L

U

Instruction
Fetch Unit

Clk

Zero

Instruction<31:0>

Jump

Branch

° We have everything except control signals (underline)

0

1

0

1

01

<
21:25>

<
16:20>

<
11:15>

<
0:15>

Imm16RdRsRt

cs 152 datapath.39 ©DAP & SIK 1995

Where to get more information?

° To be continued ...

cs 152 control.1 ©DAP & SIK 1995

February 17, 1995

Dave Patterson (patterson@cs) and
Shing Kong (shing.kong@eng.sun.com)

Slides available on http://http.cs.berkeley.edu/~patterson

CS152
Computer Architecture and Engineering

Lecture 10: Designing a Single Cycle Control

cs 152 control.2 ©DAP & SIK 1995

Recap: The MIPS Instruction Formats

° All MIPS instructions are 32 bits long. The three instruction formats:

• R-type

• I-type

• J-type

° The different fields are:

• op: operation of the instruction

• rs, rt, rd: the source and destination registers specifier

• shamt: shift amount

• funct: selects the variant of the operation in the “op” field

• address / immediate: address offset or immediate value

• target address: target address of the jump instruction

op target address

02631

6 bits 26 bits

op rs rt rd shamt funct

061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

cs 152 control.3 ©DAP & SIK 1995

Recap: The MIPS Subset

° ADD and subtract

• add rd, rs, rt

• sub rd, rs, rt

° OR Imm:

• ori rt, rs, imm16

° LOAD and STORE

• lw rt, rs, imm16

• sw rt, rs, imm16

° BRANCH:

• beq rs, rt, imm16

° JUMP:

• j target op target address

02631

6 bits 26 bits

op rs rt rd shamt funct

061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

cs 152 control.4 ©DAP & SIK 1995

Recap: A Single Cycle Datapath

32

ALUctr

Clk

busW

RegWr

32

32

busA

32
busB

55 5

Rw Ra Rb

32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xtender

M
ux

Mux

3216
imm16

ALUSrc

ExtOp

M
ux

MemtoReg

Clk

Data In
WrEn

32

Adr

Data
Memory

32

MemWr

A
L

U

Instruction
Fetch Unit

Clk

Zero

Instruction<31:0>

Jump

Branch

° We have everything except control signals (underline)

• Today’s lecture will show you how to generate the control signals

0

1

0

1

01

<
21:25>

<
16:20>

<
11:15>

<
0:15>

Imm16RdRsRt

cs 152 control.5 ©DAP & SIK 1995

The Big Picture: Where are We Now?

° The Five Classic Components of a Computer

° Today’s Topic: Designing the Control for the Single Cycle Datapath

Control

Datapath

Memory

Processor

Input

Output

cs 152 control.6 ©DAP & SIK 1995

Outline of Today’s Lecture

° Recap and Introduction (10 minutes)

° Control for Register-Register & Or Immediate instructions (10 minutes)

° Questions and Administrative Matters (5 minutes)

° Control signals for Load, Store, Branch, & Jump (15 minutes)

° Building a local controller: ALU Control (10 minutes)

° Break (5 minutes)

° The main controller (20 minutes)

° Summary (5 minutes)

cs 152 control.7 ©DAP & SIK 1995

RTL: The ADD Instruction

° add rd, rs, rt

• mem[PC] Fetch the instruction from memory

• R[rd] <- R[rs] + R[rt] The actual operation

• PC <- PC + 4 Calculate the next instruction’s address

op rs rt rd shamt funct

061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

cs 152 control.8 ©DAP & SIK 1995

Instruction Fetch Unit at the Beginning of Add / Subtract

30

SignE
xt

30

16
imm16

M
ux

0

1

A
dder

“1”

P
C

Clk

A
dder

30

30

Branch = previous Zero = previous

“00”

Addr<31:2>

Instruction
Memory

Addr<1:0>

32

M
ux

1

0

26

4

PC<31:28>

Target
30

° Fetch the instruction from Instruction memory: Instruction <- mem[PC]

• This is the same for all instructions

Jump = previous

Instruction<15:0>

Instruction<31:0>

30

Instruction<25:0>

cs 152 control.9 ©DAP & SIK 1995

The Single Cycle Datapath during Add and Subtract

32

ALUctr = Add
or Subtract

Clk

busW

RegWr = 1

32

32

busA

32
busB

55 5

Rw Ra Rb

32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst = 1

E
xtender

M
ux

Mux

3216
imm16

ALUSrc = 0

ExtOp = x

M
ux

MemtoReg = 0

Clk

Data In
WrEn

32

Adr

Data
Memory

32

MemWr = 0

A
L

U

Instruction
Fetch Unit

Clk

Zero

Instruction<31:0>

Jump = 0

Branch = 0

° R[rd] <- R[rs] + / - R[rt]

0

1

0

1

01

<
21:25>

<
16:20>

<
11:15>

<
0:15>

Imm16RdRsRt

op rs rt rd shamt funct

061116212631

cs 152 control.10 ©DAP & SIK 1995

Instruction Fetch Unit at the End of Add and Subtract

30

SignE
xt

30

16
imm16

M
ux

0

1

A
dder

“1”

P
C

Clk

A
dder

30

30

Branch = 0 Zero = x

“00”

Addr<31:2>

Instruction
Memory

Addr<1:0>

32

M
ux

1

0

26

4

PC<31:28>

Target
30

° PC <- PC + 4

• This is the same for all instructions except: Branch and Jump

Jump = 0

Instruction<15:0>

Instruction<31:0>

30

Instruction<25:0>

cs 152 control.11 ©DAP & SIK 1995

The Single Cycle Datapath during Or Immediate

32

ALUctr = Or

Clk

busW

RegWr = 1

32

32

busA

32
busB

55 5

Rw Ra Rb

32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst = 0

E
xtender

M
ux

Mux

3216
imm16

ALUSrc = 1

ExtOp = 0

M
ux

MemtoReg = 0

Clk

Data In
WrEn

32

Adr

Data
Memory

32

MemWr = 0

A
L

U

Instruction
Fetch Unit

Clk

Zero

Instruction<31:0>

Jump = 0

Branch = 0

° R[rt] <- R[rs] or ZeroExt[Imm16]

0

1

0

1

01

<
21:25>

<
16:20>

<
11:15>

<
0:15>

Imm16RdRsRt

op rs rt immediate

016212631

cs 152 control.12 ©DAP & SIK 1995

Questions and Administrative Matters

° Midterm next Wednesday 2/22/95:

• 5:00pm to 8:00pm, Sibley Auditorium

• No class on that day

° Things to bring to midterm:

• Pencil, calculator, two 8.5” x 11” pages of handwritten notes

• Sit every other chair, every other row (odd row & odd seat)

• Meet at LaVal’s pizza after the midterm ($5/person)

- Need a headcount. How many are definitely coming?

° Next homework assignment due Tuesday, 2./21/95

• Monday is a holiday

cs 152 control.13 ©DAP & SIK 1995

The Single Cycle Datapath during Load

32

ALUctr
= Add

Clk

busW

RegWr = 1

32

32

busA

32
busB

55 5

Rw Ra Rb

32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst = 0

E
xtender

M
ux

Mux

3216
imm16

ALUSrc = 1

ExtOp = 1

M
ux

MemtoReg = 1

Clk

Data In
WrEn

32

Adr

Data
Memory

32

MemWr = 0

A
L

U

Instruction
Fetch Unit

Clk

Zero

Instruction<31:0>

Jump = 0

Branch = 0

0

1

0

1

01

<
21:25>

<
16:20>

<
11:15>

<
0:15>

Imm16RdRsRt

° R[rt] <- Data Memory {R[rs] + SignExt[imm16]}

op rs rt immediate

016212631

cs 152 control.14 ©DAP & SIK 1995

The Single Cycle Datapath during Store

32

ALUctr
= Add

Clk

busW

RegWr = 0

32

32

busA

32
busB

55 5

Rw Ra Rb

32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst = x

E
xtender

M
ux

Mux

3216
imm16

ALUSrc = 1

ExtOp = 1

M
ux

MemtoReg = x

Clk

Data In
WrEn

32
Adr

Data
Memory

32

MemWr = 1

A
L

U

Instruction
Fetch Unit

Clk

Zero

Instruction<31:0>

Jump = 0

Branch = 0

0

1

0

1

01

<
21:25>

<
16:20>

<
11:15>

<
0:15>

Imm16RdRsRt

° Data Memory {R[rs] + SignExt[imm16]} <- R[rt]

op rs rt immediate

016212631

cs 152 control.15 ©DAP & SIK 1995

The Single Cycle Datapath during Branch

32

ALUctr =
Subtract

Clk

busW

RegWr = 0

32

32

busA

32
busB

55 5

Rw Ra Rb

32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst = x

E
xtender

M
ux

Mux

3216
imm16

ALUSrc = 0

ExtOp = x

M
ux

MemtoReg = x

Clk

Data In
WrEn

32

Adr

Data
Memory

32

MemWr = 0

A
L

U

Instruction
Fetch Unit

Clk

Zero

Instruction<31:0>

Jump = 0

Branch = 1

0

1

0

1

01

<
21:25>

<
16:20>

<
11:15>

<
0:15>

Imm16RdRsRt

° if (R[rs] - R[rt] == 0) then Zero <- 1 ; else Zero <- 0

op rs rt immediate

016212631

cs 152 control.16 ©DAP & SIK 1995

Instruction Fetch Unit at the End of Branch

30

SignE
xt

30

16
imm16

M
ux

0

1

A
dder

“1”

P
C

Clk

A
dder

30

30

Branch = 1 Zero = 1

“00”

Addr<31:2>

Instruction
Memory

Addr<1:0>

32

M
ux

1

0

26

4

PC<31:28>

Target
30

Jump = 0

Instruction<15:0>

Instruction<31:0>

30

Instruction<25:0>

° if (Zero == 1) then PC = PC + 4 + SignExt[imm16]*4 ; else PC = PC + 4

op rs rt immediate

016212631

Assume Zero = 1 to see
the interesting case.

cs 152 control.17 ©DAP & SIK 1995

The Single Cycle Datapath during Jump

32

ALUctr = x

Clk

busW

RegWr = 0

32

32

busA

32
busB

55 5

Rw Ra Rb

32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst = x

E
xtender

M
ux

Mux

3216
imm16

ALUSrc = x

ExtOp = x

M
ux

MemtoReg = x

Clk

Data In
WrEn

32

Adr

Data
Memory

32

MemWr = 0

A
L

U

Instruction
Fetch Unit

Clk

Zero

Instruction<31:0>

Jump = 1

Branch = 0

0

1

0

1

01

<
21:25>

<
16:20>

<
11:15>

<
0:15>

Imm16RdRsRt

° Nothing to do! Make sure control signals are set correctly!

op target address

02631

cs 152 control.18 ©DAP & SIK 1995

Instruction Fetch Unit at the End of Jump

30

SignE
xt

30

16
imm16

M
ux

0

1

A
dder

“1”

P
C

Clk

A
dder

30

30

Branch = 0 Zero = x

“00”

Addr<31:2>

Instruction
Memory

Addr<1:0>

32

M
ux

1

0

26

4

PC<31:28>

Target
30

° PC <- PC<31:29> concat target<25:0> concat “00”

Jump = 1

Instruction<15:0>

Instruction<31:0>

30

Instruction<25:0>

op target address

02631

cs 152 control.19 ©DAP & SIK 1995

A Summary of the Control Signals

add sub ori lw sw beq jump

RegDst

ALUSrc

MemtoReg

RegWrite

MemWrite

Branch

Jump

ExtOp

ALUctr<2:0>

1

0

0

1

0

0

0

x

Add

0

0

0

1

0

0

0

x

Subtract

0

1

0

1

0

0

0

0

Or

0

1

1

1

0

0

0

1

Add

x

1

x

0

1

0

0

1

Add

x

0

x

0

0

1

0

x

Subtract

x

x

x

0

0

0

1

x

xxx

op target address

op rs rt rd shamt funct

061116212631

op rs rt immediate

R-type

I-type

J-type

add, sub

ori, lw, sw, beq

jump

func

op 00 0000 00 0000 00 1101 10 0011 10 1011 00 0100 00 0010Appendix A
10 0000See 10 0010 We Don’t Care :-)

cs 152 control.20 ©DAP & SIK 1995

The Concept of Local Decoding

R-type ori lw sw beq jump

RegDst

ALUSrc

MemtoReg

RegWrite

MemWrite

Branch

Jump

ExtOp

ALUop<N:0>

1

0

0

1

0

0

0

x

“R-type”

0

1

0

1

0

0

0

0

Or

0

1

1

1

0

0

0

1

Add

x

1

x

0

1

0

0

1

Add

x

0

x

0

0

1

0

x

Subtract

x

x

x

0

0

0

1

x

xxx

op 00 0000 00 1101 10 0011 10 1011 00 0100 00 0010

Main
Control

op

6

ALU
Control
(Local)

func

N

6
ALUop

ALUctr

3

A
L

U

cs 152 control.21 ©DAP & SIK 1995

The Encoding of ALUop

° In this exercise, ALUop has to be 2 bits wide to represent:

• (1) “R-type” instructions

• “I-type” instructions that require the ALU to perform:

- (2) Or, (3) Add, and (4) Subtract

° To implement the full MIPS ISA, ALUop hat to be 3 bits to represent:

• (1) “R-type” instructions

• “I-type” instructions that require the ALU to perform:

- (2) Or, (3) Add, (4) Subtract, and (5) And (Example: andi)

Main
Control

op

6

ALU
Control
(Local)

func

N

6
ALUop

ALUctr

3

R-type ori lw sw beq jump

ALUop (Symbolic) “R-type” Or Add Add Subtract xxx

ALUop<2:0> 1 00 0 10 0 00 0 00 0 01 xxx

cs 152 control.22 ©DAP & SIK 1995

The Decoding of the “func” Field

R-type ori lw sw beq jump

ALUop (Symbolic) “R-type” Or Add Add Subtract xxx

ALUop<2:0> 1 00 0 10 0 00 0 00 0 01 xxx

Main
Control

op

6

ALU
Control
(Local)

func

N

6
ALUop

ALUctr

3

op rs rt rd shamt funct

061116212631

R-type

funct<5:0> Instruction Operation

10 0000

10 0010

10 0100

10 0101

10 1010

add

subtract

and

or

set-on-less-than

ALUctr<2:0> ALU Operation

000

001

010

110

111

Add

Subtract

And

Or

Set-on-less-than

Recall ALU Homework (also P. 286 text):

A
L

U

cs 152 control.23 ©DAP & SIK 1995

The Truth Table for ALUctr

R-type ori lw sw beqALUop
(Symbolic) “R-type” Or Add Add Subtract

ALUop<2:0> 1 00 0 10 0 00 0 00 0 01

ALUop func

bit<2> bit<1> bit<0> bit<2> bit<1> bit<0>bit<3>

0 0 0 x x x x

ALUctrALU
Operation

Add 0 1 0

bit<2> bit<1> bit<0>

0 x 1 x x x x Subtract 1 1 0

0 1 x x x x x Or 0 0 1

1 x x 0 0 0 0 Add 0 1 0

1 x x 0 0 1 0 Subtract 1 1 0

1 x x 0 1 0 0 And 0 0 0

1 x x 0 1 0 1 Or 0 0 1

1 x x 1 0 1 0 Set on < 1 1 1

funct<3:0> Instruction Op.

0000

0010

0100

0101

1010

add

subtract

and

or

set-on-less-than

cs 152 control.24 ©DAP & SIK 1995

Break (5 Minutes)

cs 152 control.25 ©DAP & SIK 1995

The Logic Equation for ALUctr<2>

ALUop func

bit<2> bit<1> bit<0> bit<2> bit<1> bit<0>bit<3> ALUctr<2>

0 x 1 x x x x 1

1 x x 0 0 1 0 1

1 x x 1 0 1 0 1

° ALUctr<2> = !ALUop<2> & ALUop<0> +

 ALUop<2> & !func<2> & func<1> & !func<0>

This makes func<3> a don’t care

cs 152 control.26 ©DAP & SIK 1995

The Logic Equation for ALUctr<1>

ALUop func

bit<2> bit<1> bit<0> bit<2> bit<1> bit<0>bit<3>

0 0 0 x x x x 1

ALUctr<1>

0 x 1 x x x x 1

1 x x 0 0 0 0 1

1 x x 0 0 1 0 1

1 x x 1 0 1 0 1

° ALUctr<1> = !ALUop<2> & !ALUop<0> +

 ALUop<2> & !func<2> & !func<0>

cs 152 control.27 ©DAP & SIK 1995

The Logic Equation for ALUctr<0>

ALUop func

bit<2> bit<1> bit<0> bit<2> bit<1> bit<0>bit<3> ALUctr<0>

0 1 x x x x x 1

1 x x 0 1 0 1 1

1 x x 1 0 1 0 1

° ALUctr<0> = !ALUop<2> & ALUop<0>

 + ALUop<2> & !func<3> & func<2> & !func<1> & func<0>

 + ALUop<2> & func<3> & !func<2> & func<1> & !func<0>

cs 152 control.28 ©DAP & SIK 1995

The ALU Control Block

ALU
Control
(Local)

func

3

6
ALUop

ALUctr

3

° ALUctr<2> = !ALUop<2> & ALUop<0> +

 ALUop<2> & !func<2> & func<1> & !func<0>

° ALUctr<1> = !ALUop<2> & !ALUop<0> +

 ALUop<2> & !func<2> & !func<0>

° ALUctr<0> = !ALUop<2> & ALUop<0>

 + ALUop<2> & !func<3> & func<2> & !func<1> & func<0>

 + ALUop<2> & func<3> & !func<2> & func<1> & !func<0>

cs 152 control.29 ©DAP & SIK 1995

The “Truth Table” for the Main Control

R-type ori lw sw beq jump

RegDst

ALUSrc

MemtoReg

RegWrite

MemWrite

Branch

Jump

ExtOp

ALUop (Symbolic)

1

0

0

1

0

0

0

x

“R-type”

0

1

0

1

0

0

0

0

Or

0

1

1

1

0

0

0

1

Add

x

1

x

0

1

0

0

1

Add

x

0

x

0

0

1

0

x

Subtract

x

x

x

0

0

0

1

x

xxx

op 00 0000 00 1101 10 0011 10 1011 00 0100 00 0010

ALUop <2> 1 0 0 0 0 x

ALUop <1> 0 1 0 0 0 x

ALUop <0> 0 0 0 0 1 x

Main
Control

op

6

ALU
Control
(Local)

func

3

6

ALUop

ALUctr

3

RegDst

ALUSrc

:

cs 152 control.30 ©DAP & SIK 1995

The “Truth Table” for RegWrite

R-type ori lw sw beq jump

RegWrite 1 1 1 x x x

op 00 0000 00 1101 10 0011 10 1011 00 0100 00 0010

° RegWrite = R-type + ori + lw

= !op<5> & !op<4> & !op<3> & !op<2> & !op<1> & !op<0> (R-type)

 + !op<5> & !op<4> & op<3> & op<2> & !op<1> & op<0> (ori)

 + op<5> & !op<4> & !op<3> & !op<2> & op<1> & op<0> (lw)

op<0>

op<5>. .op<5>. .
<0>

op<5>. .
<0>

op<5>. .
<0>

op<5>. .
<0>

op<5>. .
<0>

R-type ori lw sw beq jump

RegWrite

cs 152 control.31 ©DAP & SIK 1995

PLA Implementation of the Main Control

op<0>

op<5>. .op<5>. .
<0>

op<5>. .
<0>

op<5>. .
<0>

op<5>. .
<0>

op<5>. .
<0>

R-type ori lw sw beq jump
RegWrite

ALUSrc

MemtoReg

MemWrite

Branch

Jump

RegDst

ExtOp

ALUop<2>

ALUop<1>

ALUop<0>

cs 152 control.32 ©DAP & SIK 1995

Putting it All Together: A Single Cycle Processor

32

ALUctr

Clk

busW

RegWr

32

32

busA

32
busB

55 5

Rw Ra Rb

32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xtender

M
ux

Mux

3216
imm16

ALUSrc

ExtOp

M
ux

MemtoReg

Clk

Data In
WrEn

32

Adr

Data
Memory

32

MemWr

A
L

U

Instruction
Fetch Unit

Clk

Zero

Instruction<31:0>

Jump

Branch

0

1

0

1

01

<
21:25>

<
16:20>

<
11:15>

<
0:15>

Imm16RdRsRt

Main
Control

op

6

ALU
Controlfunc

6

3

ALUop
ALUctr

3
RegDst

ALUSrc

:
Instr<5:0>

Instr<31:26>

Instr<15:0>

cs 152 control.33 ©DAP & SIK 1995

How is this Different from a Real MIPS Processor?

° The effect of load in a real MIPS Processor is delayed:

- lw $1, 100 ($2) // Load Register R1

- add $3, $1, $0 // Move “old” R1 into R3

- add $4, $1, $0 // Move “new” R1 into R4

• The effect of load in our single cycle proccess is NOT delayed

- lw $1, 100 ($2) // Load Register R1

- add $3, $1, $0 // Move “new” R1 into R3

° The effect of branch and jump in a real MIPS Processor is delayed:

- Instruction Address: 0x00 j 1000

- Instruction Address: 0x04 add $1, $2, $3

- Instruction Address: 0x1000 sub $1, $2, $3

• Branch and jump in our single cycle proccess is NOT delayed

- Instruction Address: 0x00 j 1000

- Instruction Address: 0x1000 sub $1, $2, $3

cs 152 control.34 ©DAP & SIK 1995

Worst Case Timing
Clk

PC

Rs, Rt, Rd,
Op, Func

Clk-to-Q

ALUctr

Instruction Memoey Access Time

Old Value New Value

RegWr Old Value New Value

Delay through Control Logic

busA
Register File Access Time

Old Value New Value

busB

ALU Delay

Old Value New Value

Old Value New Value

New ValueOld Value

ExtOp Old Value New Value

ALUSrc Old Value New Value

MemtoReg Old Value New Value

Address Old Value New Value

busW Old Value New

Delay through Extender & Mux

Register
Write Occurs

Data Memory Access Time

cs 152 control.35 ©DAP & SIK 1995

Drawback of this Single Cycle Processor

° Long cycle time:

• Cycle time must be long enough for the load instruction:

PC’s Clock -to-Q +

Instruction Memory Access Time +

Register File Access Time +

ALU Delay (address calculation) +

Data Memory Access Time +

Register File Setup Time +

Clock Skew

° Cycle time is much longer than needed for all other instructions

cs 152 control.36 ©DAP & SIK 1995

Where to get more information?

° Chapter 5.1 to 5.3 of your text book:

• Daid Patterson and John Hennessy, “Computer Organization &
Design: The Hardware / Software Interface,” Morgan Kaufman
Publishers, San Mateo, California, 1994.

° One of the best PhD thesis on processor design:

• Manolis Katevenis, “Reduced Instruction Set Computer
Architecture for VLSI,” PhD Dissertation, EECS, U C Berkeley, 1982.

° For a reference on the MIPS architecture:

• Gerry Kane, “MIPS RISC Architecture,” Prentice Hall.

cs 152 multipath..1 ©DAP & SIK 1995

February 24, 1995

Dave Patterson (patterson@cs) and
Shing Kong (shing.kong@eng.sun.com)

Slides available on http://http.cs.berkeley.edu/~patterson

CS152
Computer Architecture and Engineering

Lecture 11: Designing a Multiple Cycle Processor

cs 152 multipath..2 ©DAP & SIK 1995

A Single Cycle Processor

32

ALUctr

Clk

busW

RegWr

32

32

busA

32
busB

55 5

Rw Ra Rb

32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xtender

M
ux

Mux

3216
imm16

ALUSrc

ExtOp

M
ux

MemtoReg

Clk

Data In
WrEn

32

Adr

Data
Memory

32

MemWr

A
L

U

Instruction
Fetch Unit

Clk

Zero

Instruction<31:0>

Jump

Branch

0

1

0

1

01

<
21:25>

<
16:20>

<
11:15>

<
0:15>

Imm16RdRsRt

Main
Control

op

6

ALU
Controlfunc

6

3

ALUop
ALUctr

3
RegDst

ALUSrc

:
Instr<5:0>

Instr<31:26>

Instr<15:0>

cs 152 multipath..3 ©DAP & SIK 1995

Push: Instruction Fetch Unit

30

SignE
xt

30

16
imm16

M
ux

0

1

A
dder

“1”

P
C

Clk

A
dder

30

30

Branch Zero

“00”

Addr<31:2>

Instruction
Memory

Addr<1:0>

32
M

ux

1

0

26

4

PC<31:28>

Target
30

Jump

Instruction<15:0>

Instruction<31:0>

30

Instruction<25:0>

cs 152 multipath..4 ©DAP & SIK 1995

Pop: A Single Cycle Processor

32

ALUctr

Clk

busW

RegWr

32

32

busA

32
busB

55 5

Rw Ra Rb

32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xtender

M
ux

Mux

3216
imm16

ALUSrc

ExtOp

M
ux

MemtoReg

Clk

Data In
WrEn

32

Adr

Data
Memory

32

MemWr

A
L

U

Instruction
Fetch Unit

Clk

Zero

Instruction<31:0>

Jump

Branch

0

1

0

1

01

<
21:25>

<
16:20>

<
11:15>

<
0:15>

Imm16RdRsRt

Main
Control

op

6

ALU
Controlfunc

6

3

ALUop
ALUctr

3
RegDst

ALUSrc

:
Instr<5:0>

Instr<31:26>

Instr<15:0>

cs 152 multipath..5 ©DAP & SIK 1995

Push: The Main Control

op<0>

op<5>. .op<5>. .
<0>

op<5>. .
<0>

op<5>. .
<0>

op<5>. .
<0>

op<5>. .
<0>

R-type ori lw sw beq jump
RegWrite

ALUSrc

MemtoReg

MemWrite

Branch

Jump

RegDst

ExtOp

ALUop<2>

ALUop<1>

ALUop<0>

cs 152 multipath..6 ©DAP & SIK 1995

Outline of Today’s Lecture

° Recap and Introduction (5 minutes)

° Introduction to the Concept of Multiple Cycle Processor (15 minutes)

° Questions and Administrative Matters (5 minutes)

° Multiple Cycle Implementation of R-type Instructions (15 minutes)

° What is a Multiple Cycle Delay Path and Why is it Bad? (10 minutes)

° Break (5 minutes)

° Multiple Cycle Implementation of Or Immediate (5 minutes)

° Multiple Cycle Implementation of Load and Store (15 minutes)

° Putting it all Together (5 minutes)

cs 152 multipath..7 ©DAP & SIK 1995

Drawbacks of this Single Cycle Processor

° Long cycle time:

• Cycle time must be long enough for the load instruction:

- PC’s Clock -to-Q +

- Instruction Memory Access Time +

- Register File Access Time +

- ALU Delay (address calculation) +

- Data Memory Access Time +

- Register File Setup Time +

- Clock Skew

° Cycle time is much longer than needed for all other instructions.
Examples:

• R-type instructions do not require data memory access

• Jump does not require ALU operation nor data memory access

cs 152 multipath..8 ©DAP & SIK 1995

Overview of a Multiple Cycle Implementation

° The root of the single cycle processor’s problems:

• The cycle time has to be long enough for the slowest instruction

° Solution:

• Break the instruction into smaller steps

• Execute each step (instead of the entire instruction) in one cycle

- Cycle time: time it takes to execute the longest step

- Keep all the steps to have similar length

• This is the essence of the multiple cycle processor

° The advantages of the multiple cycle processor:

• Cycle time is much shorter

• Different instructions take different number of cycles to complete

- Load takes five cycles

- Jump only takes three cycles

• Allows a functional unit to be used more than once per instruction

cs 152 multipath..9 ©DAP & SIK 1995

The Five Steps of a Load Instruction

Clk

PC

Rs, Rt, Rd,
Op, Func

Clk-to-Q

ALUctr

Instruction Memory Access Time

Old Value New Value

RegWr Old Value New Value

Delay through Control Logic

busA
Register File Access Time

Old Value New Value

busB

ALU Delay

Old Value New Value

Old Value New Value

New ValueOld Value

ExtOp Old Value New Value

ALUSrc Old Value New Value

Address Old Value New Value

busW Old Value New

Delay through Extender & Mux

Data Memory Access Time

Instruction Fetch Instr Decode /

Reg. Fetch

Address Reg WrData Memory
R

egister F
ile W

rite T
im

e

cs 152 multipath..10 ©DAP & SIK 1995

Register File & Memory Write Timing: Ideal vs. Reality

° In previous lectures, register file and memory are simplified:

• Write happens at the clock tick

• Address, data, and write enable must be
stable one “set-up” time before the clock tick

° In real life:

• Neither register file nor ideal memory has the clock input

• The write path is a combinational logic delay path:

- Write enable goes to 1 and Din settles down

- Memory write access delay

- Din is written into mem[address]

• Important: Address and Data must be
stable BEFORE Write Enable goes to 1

Adr

Din

WrEn

Dout

Ideal
Memory

32

32 32

Clk

Adr

Din

WrEn

Dout

Ideal
Memory

32

32 32

cs 152 multipath..11 ©DAP & SIK 1995

Race Condition Between Address and Write Enable

° This “real” (no clock input) register file may not
work reliably in the single cycle processor because:

• We cannot guarantee Rw will
be stable BEFORE RegWr = 1

• There is a “race” between Rw (address)
and RegWr (write enable)

° The “real” (no clock input) memory may not work
reliably in the single cycle processor because:

• We cannot guarantee Address will
be stable BEFORE WrEn = 1

• There is a race between Adr and WrEn

Reg File

Ra

Rw

busW

Rb busA

busB

RegWr
5

5

5

32
32

32

Adr

Din

WrEn

Dout

Ideal
Memory

32

32 32

cs 152 multipath..12 ©DAP & SIK 1995

How to Avoid this Race Condition?

° Solution for the multiple cycle implementation:

• Make sure Address is stable by the end of Cycle N

• Assert Write Enable signal ONE cycle later at Cycle (N + 1)

• Address cannot change until Write Enable is disasserted

cs 152 multipath..13 ©DAP & SIK 1995

Dual-Port Ideal Memory

° Dual Port Ideal Memory

• Independent Read (RAdr, Dout) and Write (WAdr, Din) ports

• Read and write (to different location) can occur at the same cycle

° Read Port is a combinational path:

• Read Address Valid -->

• Memory Read Access Delay -->

• Data Out Valid

° Write Port is also a combinational path:

• MemWrite = 1 -->

• Memory Write Access Delay -->

• Data In is written into location[WrAdr]

Ideal
Memory

<31:2>

WrAdr
Din

RAdr<1:0>
00

30

32

32 32
Dout

MemWr

cs 152 multipath..14 ©DAP & SIK 1995

Questions and Administrative Matters

cs 152 multipath..15 ©DAP & SIK 1995

Instruction Fetch Cycle: In the Beginning

° Every cycle begins right AFTER the clock tick:

• mem[PC] PC<31:0> + 4

Ideal
Memory

WrAdr

Din

RAdr
32

32

32
32

Dout

MemWr=?

P
C

32
32

Clk

A
L

U

32

32

ALUop=?

ALU
Control

4
Instruction R

eg

32

IRWr=?

Clk

PCWr=?

Clk

You are here!

One “Logic” Clock Cycle

cs 152 multipath..16 ©DAP & SIK 1995

Instruction Fetch Cycle: The End

° Every cycle ends AT the next clock tick (storage element updates):

• IR <-- mem[PC] PC<31:0> <-- PC<31:0> + 4

Ideal
Memory
WrAdr

Din

RAdr
32

32

32 32
Dout

MemWr=0

P
C

32
32

Clk

A
L

U

32

32

ALUOp = Add

ALU
Control

4

00

Instruction R
eg

32

IRWr=1

Clk

PCWr=1

Clk

You are here!

One “Logic” Clock Cycle

cs 152 multipath..17 ©DAP & SIK 1995

Instruction Fetch Cycle: Overall Picture

Target

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr=0

32

A
L

U

32
32

ALUOp=Add

ALU
Control

Instruction R
eg

IRWr=1

32

32
busA

32busB

PCWr=1

ALUSelA=0

M
ux

0

1

32

PC

M
ux

0

1
32

0

1

2
3

4

ALUSelB=00

M
ux

1

0

32

Zero

Zero
PCWrCond=x PCSrc=0 BrWr=0

32

IorD=0

1: PCWr, IRWr
ALUOp=Add

Others: 0s

x: PCWrCond
RegDst, Mem2R

Ifetch

cs 152 multipath..18 ©DAP & SIK 1995

Register Fetch / Instruction Decode

° busA <- RegFile[rs] ; busB <- RegFile[rt] ;

° ALU is not being used: ALUctr = xx

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr=0

32

A
L

U

32
32

ALUOp=xx

ALU
Control

Instruction R
eg

32

IRWr=0

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr=0

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr=0

ALUSelA=xRegDst=x

M
ux

0

1

32

PC

M
ux

0

1
32

0

1

2
3

4

16

Imm ALUSelB=xx

M
ux

1

0

32

Zero

Zero
PCWrCond=0

PCSrc=x

32

IorD=x

Func

OpGo to the
Control 6

6

cs 152 multipath..19 ©DAP & SIK 1995

Register Fetch / Instruction Decode (Continue)

° busA <- Reg[rs] ; busB <- Reg[rt] ;

° Target <- PC + SignExt(Imm16)*4

Target

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr=0

32

A
L

U

32
32

ALUOp=Add

ALU
Control

Instruction R
eg

32

IRWr=0

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr=0

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr=0

ALUSelA=0RegDst=x

M
ux

0

1

32

PC

Extend

ExtOp=1

M
ux

0

1
32

0

1

2
3

4

16

Imm

32

<< 2

ALUSelB=10

M
ux

1

0

32

Zero

Zero
PCWrCond=0

PCSrc=x BrWr=1

32

IorD=x

Func

OpControl 6

6

Beq
Rtype

Ori
Memory

:

1: BrWr, ExtOp
ALUOp=Add

Others: 0s

x: RegDst, PCSrc
ALUSelB=10

IorD, MemtoReg

Rfetch/Decode

cs 152 multipath..20 ©DAP & SIK 1995

Branch Completion

° if (busA == busB)

• PC <- Target

Target

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr=0

32

A
L

U

32
32

ALUOp=Sub

ALU
Control

Instruction R
eg

32

IRWr=0

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr=0

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr=0

ALUSelA=1RegDst=x

M
ux

0

1

32

PC

Extend

ExtOp=x

M
ux

0

1
32

0

1

2
3

4

16

Imm

32

<< 2

ALUSelB=01

M
ux

1

0

32

Zero

Zero
PCWrCond=1

PCSrc=1 BrWr=0

32

IorD=x

1: PCWrCond

ALUOp=Sub

x: IorD, Mem2Reg
ALUSelB=01

RegDst, ExtOp

ALUSelA

BrComplete

PCSrc

cs 152 multipath..21 ©DAP & SIK 1995

Instruction Decode: We have a R-type!

° Next Cycle: R-type Execution

Target

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr=0

32

A
L

U

32
32

ALUOp=Add

ALU
Control

Instruction R
eg

32

IRWr=0

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr=0

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr=0

ALUSelA=0RegDst=x

M
ux

0

1

32

PC

Extend

ExtOp=1

M
ux

0

1
32

0

1

2
3

4

16

Imm

32

<< 2

ALUSelB=10

M
ux

1

0

32

Zero

Zero
PCWrCond=0

PCSrc=x BrWr=1

32

IorD=x

Func

OpControl 6

6

Beq
Rtype

Ori
Memory

:

cs 152 multipath..22 ©DAP & SIK 1995

R-type Execution
° ALU Output <- busA op busB

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr=0

32

A
L

U

32
32

ALUOp=Rtype

ALU
Control

Instruction R
eg

32

IRWr=0

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr=0

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr=0

ALUSelA=1

Mux 01

RegDst=1

M
ux

0

1

32

PC

MemtoReg=x

Extend

ExtOp=x

M
ux

0

1
32

0

1

2
3

4

16Imm 32

<< 2

ALUSelB=01

M
ux

1

0

Target
32

Zero

Zero
PCWrCond=0 PCSrc=x BrWr=0

32

IorD=x

1: RegDst

ALUOp=Rtype
ALUSelB=01

x: PCSrc, IorD
MemtoReg

ALUSelA

ExtOp

RExec

cs 152 multipath..23 ©DAP & SIK 1995

R-type Completion
° R[rd] <- ALU Output

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr=0

32

A
L

U

32
32

ALUOp=Rtype

ALU
Control

Instruction R
eg

32

IRWr=0

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr=1

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr=0

ALUSelA=1

Mux 01

RegDst=1

M
ux

0

1

32

PC

MemtoReg=0

Extend

ExtOp=x

M
ux

0

1
32

0

1

2
3

4

16Imm 32

<< 2

ALUSelB=01

M
ux

1

0

Target
32

Zero

Zero
PCWrCond=0 PCSrc=x BrWr=0

32

IorD=x

1: RegDst, RegWr
ALUOp=Rtype

ALUselA

x: IorD, PCSrc
ALUSelB=01

ExtOp

Rfinish

cs 152 multipath..24 ©DAP & SIK 1995

A Multiple Cycle Delay Path

° There is no register to save the results between:

• Register Fetch: busA <- Reg[rs] ; busB <- Reg[rt]

• R-type Execution: ALU output <- busA op busB

• R-type Completion: Reg[rd] <- ALU output

A
L

U

32
32

ALU
Control

Instruction R
eg

32
Reg File

Ra

Rw

busW

Rb
5

5

32

busA

32busB

Rs

Rt

M
ux

0

1

Rt

Rd

Mux 01

M
ux

0

1 32

0

1

2
3

4

Zero
PCWr

ALUselA

ALUselB

Register here to save
outputs of Rfetch?

Register here to save
outputs of RExec?

ALUOp

cs 152 multipath..25 ©DAP & SIK 1995

A Multiple Cycle Delay Path (Continue)

° Register is NOT needed to save the outputs of Register Fetch:

• IRWr = 0: busA and busB will not change after Register Fetch

° Register is NOT needed to save the outputs of R-type Execution:

• busA and busB will not change after Register Fetch

• Control signals ALUSelA, ALUSelB, and ALUOp
will not change after R-type Execution

• Consequently ALU output will not change after R-type Execution

° In theory (P. 316, P&H), you need a register to hold a signal value if:

• (1) The signal is computed in one clock cycle and used in another.

• (2) AND the inputs to the functional block that computes this signal
 can change before the signal is written into a state element.

° You can save a regiser if Cond 1 is true BUT Cond 2 is false:

• But in practice, this will introduce a multiple cycle delay path:

- A logic delay path that takes multiple cycles to propagate
from one storage element to the next storage element

cs 152 multipath..26 ©DAP & SIK 1995

Pros and Cons of a Multiple Cycle Delay Path

° A 3-cycle path example:

• IR (storage) -> Reg File Read -> ALU -> Regr File Write (storage)

° Advantages:

• Register savings

• We can share time among cycles:

- If ALU takes longer than one cycle, still “a OK” as long
as the entire path takes less than 3 cycles to finish

A
L

U

32
32

ALU
Control

Instruction R
eg

32
Reg File

Ra

Rw

busW

Rb
5

5

32

busA

32busB

Rs

Rt

M
ux

0

1

Rt

Rd

Mux 01

M
ux

0

1 32

0

1

2
3

4

Zero

ALUselB

cs 152 multipath..27 ©DAP & SIK 1995

Pros and Cons of a Multiple Cycle Delay Path (Continue)

° Disadvantge:

• Static timing analyzer, which ONLY looks at delay between two
storage elements, will report this as a timing violation

• You have to ignore the static timing analyzer’s warnings

• But you may end up ignoring real timing violations

• I always TRY to put in registers between cycles to avoid MCP

A
L

U

32
32

ALU
Control

Instruction R
eg

32
Reg File

Ra

Rw

busW

Rb
5

5

32

busA

32busB

Rs

Rt

M
ux

0

1

Rt

Rd

Mux 01

M
ux

0

1 32

0

1

2
3

4

Zero

ALUselB

cs 152 multipath..28 ©DAP & SIK 1995

Break (5 Minutes)

cs 152 multipath..29 ©DAP & SIK 1995

Instruction Decode: We have an Ori!

° Next Cycle: Ori Execution

Target

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr=0

32

A
L

U

32
32

ALUOp=Add

ALU
Control

Intruction R
eg

32

IRWr=0

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr=0

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr=0

ALUSelA=0RegDst=x

M
ux

0

1

32

PC

Extend

ExtOp=1

M
ux

0

1
32

0

1

2
3

4

16

Imm

32

<< 2

ALUSelB=10

M
ux

1

0

32

Zero

Zero
PCWrCond=0

PCSrc=x BrWr=1

32

IorD=x

Func

OpControl 6

6

Beq
Rtype
Ori

Memory
:

cs 152 multipath..30 ©DAP & SIK 1995

Ori Execution
° ALU output <- busA or ZeroExt[Imm16]

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr=0

32

A
L

U

32
32

ALUOp=Or

ALU
Control

Instruction R
eg

32

IRWr=0

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr=0

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr=0

ALUSelA=1

Mux 01

RegDst=0

M
ux

0

1

32

PC

MemtoReg=x

Extend

ExtOp=0

M
ux

0

1
32

0

1

2
3

4

16Imm 32

<< 2

ALUSelB=11

M
ux

1

0

Target
32

Zero

Zero
PCWrCond=0 PCSrc=x BrWr=0

32

IorD=x

ALUOp=Or

IorD, PCSrc

1: ALUSelA

ALUSelB=11
x: MemtoReg

OriExec

cs 152 multipath..31 ©DAP & SIK 1995

Ori Completion

° Reg[rt] <- ALU output

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr=0

32

A
L

U

32
32

ALUOp=Or

ALU
Control

Instruction R
eg

32

IRWr=0

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr=1

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr=0

ALUSelA=1

Mux 01

RegDst=0

M
ux

0

1

32

PC

MemtoReg=0

Extend

ExtOp=0

M
ux

0

1
32

0

1

2
3

4

16Imm 32

<< 2

ALUSelB=11

M
ux

1

0

Target
32

Zero

Zero
PCWrCond=0 PCSrc=x BrWr=0

32

IorD=x

1: ALUSelA

ALUOp=Or

x: IorD, PCSrc

RegWr

ALUSelB=11

OriFinish

cs 152 multipath..32 ©DAP & SIK 1995

Instruction Decode: We have a Memory Access!

° Next Cycle: Memory Address Calculation

Target

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr=0

32

A
L

U

32
32

ALUOp=Add

ALU
Control

Instruction R
eg

32

IRWr=0

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr=0

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr=0

ALUSelA=0RegDst=x

M
ux

0

1

32

PC

Extend

ExtOp=1

M
ux

0

1
32

0

1

2
3

4

16

Imm

32

<< 2

ALUSelB=10

M
ux

1

0

32

Zero

Zero
PCWrCond=0

PCSrc=x BrWr=1

32

IorD=x

Func

OpControl 6

6

Beq
Rtype
Ori

Memory
:

cs 152 multipath..33 ©DAP & SIK 1995

Memory Address Calculation

° ALU output <- busA + SignExt[Imm16]

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr=0

32

A
L

U

32
32

ALUOp=Add

ALU
Control

Instruction R
eg

32

IRWr=0

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr=1

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr=0

ALUSelA=1

Mux 01

RegDst=x

M
ux

0

1

32

PC

MemtoReg=x

Extend

ExtOp=1

M
ux

0

1
32

0

1

2
3

4

16Imm 32

<< 2

ALUSelB=11

M
ux

1

0

Target
32

Zero

Zero
PCWrCond=0 PCSrc=x BrWr=0

32

IorD=x

ALUOp=Add

PCSrc

1: ExtOp

ALUSelB=11

x: MemtoReg

ALUSelA

AdrCal

cs 152 multipath..34 ©DAP & SIK 1995

Memory Access for Store

° mem[ALU output] <- busB

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr=1

32

A
L

U

32
32

ALUOp=Add

ALU
Control

Instruction R
eg

32

IRWr=0

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr=0

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr=0

ALUSelA=1

Mux 01

RegDst=x

M
ux

0

1

32

PC

MemtoReg=x

Extend

ExtOp=1

M
ux

0

1
32

0

1

2
3

4

16Imm 32

<< 2

ALUSelB=11

M
ux

1

0

Target
32

Zero

Zero
PCWrCond=0 PCSrc=x BrWr=0

32

IorD=x

ALUOp=Add
x: PCSrc,RegDst

1: ExtOp

ALUSelB=11

MemtoReg

MemWr
ALUSelA

SWmem

cs 152 multipath..35 ©DAP & SIK 1995

Memory Access for Load

° Mem Dout <- mem[ALU output]

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr=0

32

A
L

U

32
32

ALUOp=Add

ALU
Control

Instruction R
eg

32

IRWr=0

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr=0

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr=0

ALUSelA=1

Mux 01

RegDst=0

M
ux

0

1

32

PC

MemtoReg=x

Extend

ExtOp=1

M
ux

0

1
32

0

1

2
3

4

16Imm 32

<< 2

ALUSelB=11

M
ux

1

0

Target
32

Zero

Zero
PCWrCond=0 PCSrc=x BrWr=0

32

IorD=1

ALUOp=Add
x: MemtoReg

1: ExtOp

ALUSelB=11
ALUSelA, IorD

PCSrc

LWmem

cs 152 multipath..36 ©DAP & SIK 1995

Write Back for Load

° Reg[rt] <- Mem Dout

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr=0

32

A
L

U

32
32

ALUOp=Add

ALU
Control

Instruction R
eg

32

IRWr=0

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr=0

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr=0

ALUSelA=1

Mux 01

RegDst=0

M
ux

0

1

32

PC

MemtoReg=1

Extend

ExtOp=1

M
ux

0

1
32

0

1

2
3

4

16Imm 32

<< 2

ALUSelB=11

M
ux

1

0

Target
32

Zero

Zero
PCWrCond=0 PCSrc=x BrWr=0

32

IorD=x

ALUOp=Add
x: PCSrc

1: ALUSelA

ALUSelB=11
MemtoReg

RegWr, ExtOp

IorD

LWwr

cs 152 multipath..37 ©DAP & SIK 1995

Putting it all together: Multiple Cycle Datapath

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr

32

A
L

U

32
32

ALUOp

ALU
Control

Instruction R
eg

32

IRWr

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr

ALUSelA

Mux 01

RegDst

M
ux

0

1

32

PC

MemtoReg

Extend

ExtOp

M
ux

0

1
32

0

1

2
3

4

16Imm 32

<< 2

ALUSelB

M
ux

1

0

Target
32

Zero

Zero
PCWrCond PCSrc BrWr

32

IorD

cs 152 multipath..38 ©DAP & SIK 1995

Summary

° Disadvantages of the Singple Cycle Proccessor

• Long cycle time

• Cycle time is too long for all instructions except the Load

° Multiple Cycle Processor:

• Divide the instructions into smaller steps

• Execute each step (instead of the entire instruction) in one cycle

° Do NOT cofuse Multiple Cycle Processor with Multipe Cycle Dealy Path

• Multiple Cycle Processor executes each
instruction in multiple clock cycles

• Multiple Cycle Delay Path: a combinational logic path between two
storage elements that takes more than one clock cycle to complete

° It is possible (desirable) to build a MC Processor without MCDP:

• Use a register to save a signal’s value whenever a signal is
generated in one clock cycle and used in another cycle later

cs 152 multipath..39 ©DAP & SIK 1995

Putting it all together: Control State Diagram

1: PCWr, IRWr
ALUOp=Add

Others: 0s

x: PCWrCond
RegDst, Mem2R

Ifetch

1: BrWr, ExtOp
ALUOp=Add

Others: 0s

x: RegDst, PCSrc
ALUSelB=10

IorD, MemtoReg

Rfetch/Decode

1: PCWrCond

ALUOp=Sub

x: IorD, Mem2Reg
ALUSelB=01

RegDst, ExtOp

ALUSelA

BrComplete

PCSrc

1: RegDst

ALUOp=Rtype
ALUSelB=01

x: PCSrc, IorD
MemtoReg

ALUSelA

ExtOp

RExec

1: RegDst, RegWr
ALUOp=Rtype

ALUselA

x: IorD, PCSrc
ALUSelB=01

ExtOp

Rfinish

ALUOp=Or

IorD, PCSrc

1: ALUSelA

ALUSelB=11
x: MemtoReg

OriExec

1: ALUSelA

ALUOp=Or

x: IorD, PCSrc

RegWr

ALUSelB=11

OriFinish

ALUOp=Add

PCSrc

1: ExtOp

ALUSelB=11

x: MemtoReg

ALUSelA

AdrCal

ALUOp=Add
x: PCSrc,RegDst

1: ExtOp

ALUSelB=11

MemtoReg

MemWr
ALUSelA

SWMem

ALUOp=Add
x: MemtoReg

1: ExtOp

ALUSelB=11
ALUSelA, IorD

PCSrc

LWmem

ALUOp=Add
x: PCSrc

1: ALUSelA

ALUSelB=11
MemtoReg

RegWr, ExtOp

IorD

LWwr

lw or sw

lw sw
Rtype

Ori

beq

cs 152 multipath..40 ©DAP & SIK 1995

Where to get more information?

° Next two lectures:

• Multiple Cycle Controller: Appendix C of your text book.

• Microprogramming: Section 5.5 of your text book.

° D. Patterson, “Microprograming,” Scientific America, March 1983.

° D. Patterson and D. Ditzel, “The Case for the Reduced Instruction Set
Computer,” Computer Architecture News 8, 6 (October 15, 1980)

cs 152 multicontroller..1 ©DAP & SIK 1995

March 1, 1995

Dave Patterson (patterson@cs) and
Shing Kong (shing.kong@eng.sun.com)

Slides available on http://http.cs.berkeley.edu/~patterson

CS152
Computer Architecture and Engineering

Lecture 12: Designing a Multiple Cycle Controller

cs 152 multicontroller..2 ©DAP & SIK 1995

Review of a Multiple Cycle Implementation

° The root of the single cycle processor’s problems:

• The cycle time has to be long enough for the slowest instruction

° Solution:

• Break the instruction into smaller steps

• Execute each step (instead of the entire instruction) in one cycle

- Cycle time: time it takes to execute the longest step

- Keep all the steps to have similar length

• This is the essence of the multiple cycle processor

° The advantages of the multiple cycle processor:

• Cycle time is much shorter

• Different instructions take different number of cycles to complete

- Load takes five cycles

- Jump only takes three cycles

• Allows a functional unit to be used more than once per instruction

cs 152 multicontroller..3 ©DAP & SIK 1995

Review: Instruction Fetch Cycle, In the Beginning

° Every cycle begins right AFTER the clock tick:

• mem[PC] PC<31:0> + 4

Ideal
Memory

WrAdr

Din

RAdr
32

32

32
32

Dout

MemWr=?

P
C

32
32

Clk

A
L

U

32

32

ALUop=?

ALU
Control

4
Instruction R

eg

32

IRWr=?

Clk

PCWr=?

Clk

You are here!

One “Logic” Clock Cycle

cs 152 multicontroller..4 ©DAP & SIK 1995

Review: Instruction Fetch Cycle, The End

° Every cycle ends AT the next clock tick (storage element updates):

• IR <-- mem[PC] PC<31:0> <-- PC<31:0> + 4

Ideal
Memory
WrAdr

Din

RAdr
32

32

32 32
Dout

MemWr=0

P
C

32
32

Clk

A
L

U

32

32

ALUOp = Add

ALU
Control

4

00

Instruction R
eg

32

IRWr=1

Clk

PCWr=1

Clk

You are here!

One “Logic” Clock Cycle

cs 152 multicontroller..5 ©DAP & SIK 1995

Putting it all together: Multiple Cycle Datapath

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr

32

A
L

U

32
32

ALUOp

ALU
Control

Instruction R
eg

32

IRWr

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr

ALUSelA

Mux 01

RegDst

M
ux

0

1

32

PC

MemtoReg

Extend

ExtOp

M
ux

0

1
32

0

1

2
3

4

16Imm 32

<< 2

ALUSelB

M
ux

1

0

Target
32

Zero

Zero
PCWrCond PCSrc BrWr

32

IorD

cs 152 multicontroller..6 ©DAP & SIK 1995

Instruction Fetch Cycle: Overall Picture

Target

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr=0

32

A
L

U

32
32

ALUOp=Add

ALU
Control

Instruction R
eg

IRWr=1

32

32
busA

32busB

PCWr=1

ALUSelA=0

M
ux

0

1

32

PC

M
ux

0

1
32

0

1

2
3

4

ALUSelB=00

M
ux

1

0

32

Zero

Zero
PCWrCond=x PCSrc=0 BrWr=0

32

IorD=0

1: PCWr, IRWr
ALUOp=Add

Others: 0s

x: PCWrCond
RegDst, Mem2R

Ifetch

cs 152 multicontroller..7 ©DAP & SIK 1995

Register Fetch / Instruction Decode (Continue)

° busA <- Reg[rs] ; busB <- Reg[rt] ;

° Target <- PC + SignExt(Imm16)*4

Target

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr=0

32

A
L

U

32
32

ALUOp=Add

ALU
Control

Instruction R
eg

32

IRWr=0

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr=0

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr=0

ALUSelA=0RegDst=x

M
ux

0

1

32

PC

Extend

ExtOp=1

M
ux

0

1
32

0

1

2
3

4

16

Imm

32

<< 2

ALUSelB=10

M
ux

1

0

32

Zero

Zero
PCWrCond=0

PCSrc=x BrWr=1

32

IorD=x

Func

OpControl 6

6

Beq
Rtype

Ori
Memory

:

1: BrWr, ExtOp
ALUOp=Add

Others: 0s

x: RegDst, PCSrc
ALUSelB=10

IorD, MemtoReg

Rfetch/Decode

cs 152 multicontroller..8 ©DAP & SIK 1995

R-type Execution
° ALU Output <- busA op busB

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr=0

32

A
L

U

32
32

ALUOp=Rtype

ALU
Control

Instruction R
eg

32

IRWr=0

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr=0

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr=0

ALUSelA=1

Mux 01

RegDst=1

M
ux

0

1

32

PC

MemtoReg=x

Extend

ExtOp=x

M
ux

0

1
32

0

1

2
3

4

16Imm 32

<< 2

ALUSelB=01

M
ux

1

0

Target
32

Zero

Zero
PCWrCond=0 PCSrc=x BrWr=0

32

IorD=x

1: RegDst

ALUOp=Rtype
ALUSelB=01

x: PCSrc, IorD
MemtoReg

ALUSelA

ExtOp

RExec

cs 152 multicontroller..9 ©DAP & SIK 1995

R-type Completion
° R[rd] <- ALU Output

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr=0

32

A
L

U

32
32

ALUOp=Rtype

ALU
Control

Instruction R
eg

32

IRWr=0

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr=1

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr=0

ALUSelA=1

Mux 01

RegDst=1

M
ux

0

1

32

PC

MemtoReg=0

Extend

ExtOp=x

M
ux

0

1
32

0

1

2
3

4

16Imm 32

<< 2

ALUSelB=01

M
ux

1

0

Target
32

Zero

Zero
PCWrCond=0 PCSrc=x BrWr=0

32

IorD=x

1: RegDst, RegWr
ALUOp=Rtype

ALUselA

x: IorD, PCSrc
ALUSelB=01

ExtOp

Rfinish

cs 152 multicontroller..10 ©DAP & SIK 1995

Outline of Today’s Lecture

° Recap (5 minutes)

° Review of FSM control (15 minutes)

° Questions and Administrative Matters (5 minutes)

° From Finite State Diagrams to Microprogramming (25 minutes)

° Break (5 minutes)

° ABCs of microprogramming (25 minutes)

cs 152 multicontroller..11 ©DAP & SIK 1995

Overview of Next Two Lectures

° Control may be designed using one of several initial representations.
The choice of sequence control, and how logic is represented, can then
be determined independently; the control can then be implemented with
one of several methods using a structured logic technique.

Initial Representation Finite State Diagram Microprogram

Sequencing Control Explicit Next State Microprogram counter
 Function + Dispatch ROMs

Logic Representation Logic Equations Truth Tables

Implementation Technique PLA ROM
“hardwired control” “microprogrammed control”

cs 152 multicontroller..12 ©DAP & SIK 1995

Initial Representation: Finite State Diagram

1: PCWr, IRWr
ALUOp=Add

Others: 0s

x: PCWrCond
RegDst, Mem2R

Ifetch

1: BrWr, ExtOp
ALUOp=Add

Others: 0s

x: RegDst, PCSrc
ALUSelB=10

IorD, MemtoReg

Rfetch/Decode

1: PCWrCond

ALUOp=Sub

x: IorD, Mem2Reg
ALUSelB=01

RegDst, ExtOp

ALUSelA

BrComplete

PCSrc

1: RegDst

ALUOp=Rtype
ALUSelB=01

x: PCSrc, IorD
MemtoReg

ALUSelA

ExtOp

RExec

1: RegDst, RegWr
ALUOp=Rtype

ALUselA

x: IorD, PCSrc
ALUSelB=01

ExtOp

Rfinish

ALUOp=Or

IorD, PCSrc

1: ALUSelA

ALUSelB=11
x: MemtoReg

OriExec

1: ALUSelA

ALUOp=Or

x: IorD, PCSrc

RegWr

ALUSelB=11

OriFinish

ALUOp=Add

PCSrc

1: ExtOp

ALUSelB=11

x: MemtoReg

ALUSelA

AdrCal

ALUOp=Add
x: PCSrc,RegDst

1: ExtOp

ALUSelB=11

MemtoReg

MemWr
ALUSelA

SWMem

ALUOp=Add
x: MemtoReg

1: ExtOp

ALUSelB=11
ALUSelA, IorD

PCSrc

LWmem

ALUOp=Add
x: PCSrc

1: ALUSelA

ALUSelB=11
MemtoReg

RegWr, ExtOp

IorD

LWwr

lw or sw

lw sw
Rtype

Ori

beq

0
1 8

10

653

2

4
7

11

cs 152 multicontroller..13 ©DAP & SIK 1995

Sequencing Control: Explicit Next State Function

° Next state number is encoded just like datapath controls

Opcode State Reg

Inputs

O
u
t
p
u
t
s

Control Logic

Multicycle
Datapath

cs 152 multicontroller..14 ©DAP & SIK 1995

Logic Representative: Logic Equations

° Next state from current state

• State 0 -> State1

• State 1 -> S2, S6, S8, S10

• State 2 ->__________

• State 3 ->__________

• State 4 ->State 0

• State 5 -> State 0

• State 6 -> State 7

• State 7 -> State 0

• State 8 -> State 0

• State 9-> State 0

• State 10 -> State 11

• State 11 -> State 0

°Alternatively,
prior state & condition

S4, S5, S7, S8, S9, S11 -> State0

_________________ -> State 1

_________________ -> State 2

_________________ -> State 3

_________________ -> State 4

 State2 & op = sw -> State 5

_________________ -> State 6

 State 6 -> State 7

_________________ -> State 8

 State2 & op = jmp -> State 9

_________________ -> State 10

 State 10 -> State 11

cs 152 multicontroller..15 ©DAP & SIK 1995

Implementation Technique: Programmed Logic Arrays

° Each output line the logical OR of logical AND of input lines or their
complement: AND minterms specified in top AND plane, OR sums
specified in bottom OR plane

Op5
Op4
Op3
Op2
Op1
Op0
S3
S2
S1
S0

NS3
NS2
NS1
NS0

R = 000000
beq = 000100
lw = 100011
sw = 101011
ori = 001011
jmp = 000010

6 = 0110
7 = 0111
8 = 1000
9 = 1001

10 = 1010
11 = 1011

0 = 0000
1 = 0001
2 = 0010
3 = 0011
4 = 0100
5 = 0101

cs 152 multicontroller..16 ©DAP & SIK 1995

Questions and Administrative Matters

° Apologize for problems with the franklin.cs

• Lessons learned for your career?

° “Midterm” for instructors and TAs: constructive criticism by Friday

• Please put your name, as I want to hear from everyone

• If you want to submit an anonymous form, just take a second copy

• Be careful what you wish for, it may come true

- this semester we switched to the faster HP workstations
(which is the cause of the instability) and doubled the number
of Powerview licenses and disk space per group

• Return in class Friday, right after 5 minute break

° Email progress reports 4PM Friday

° Assume reasonable dealys for modules for next assignment

° Go to discussion section so that you can meet with your group!!!

cs 152 multicontroller..17 ©DAP & SIK 1995

Implementation Technique: Programmed Logic Arrays

° Each output line the logical OR of logical AND of input lines or their
complement: AND minterms specified in top AND plane, OR sums
specified in bottom OR plane

Op5
Op4
Op3
Op2
Op1
Op0
S3
S2
S1
S0

NS3
NS2
NS1
NS0

lw = 100011
sw = 101011
R = 000000
ori = 001011
beq = 000100
jmp = 000010

0 = 0000
1 = 0001
2 = 0010
3 = 0011
4 = 0100
5 = 0101

6 = 0110
7 = 0111
8 = 1000
9 = 1001

10 = 1010
11 = 1011

cs 152 multicontroller..18 ©DAP & SIK 1995

Multicycle Control

° Given numbers of FSM, can turn determine next state as function of
inputs, including current state

° Turn these into Boolean equations for each bit of the next state lines

° Can implement easily using PLA

° What if many more states, many more conditions?

° What if need to add a state?

cs 152 multicontroller..19 ©DAP & SIK 1995

° Before Explicit Next State: Next try variation 1 step from right hand side

° Few sequential states in small FSM: suppose added floating point?

° Still need to go to non-sequential states: e.g., state 1 => 2, 6, 8, 10

Initial Representation Finite State Diagram Microprogram

Sequencing Control Explicit Next State Microprogram counter
 Function + Dispatch ROMs

Logic Representation Logic Equations Truth Tables

Implementation Technique PLA ROM

Next Iteration: Using Sequencer for Next State

“hardwired control” “microprogrammed control”

cs 152 multicontroller..20 ©DAP & SIK 1995

Sequencer-based control unit

Opcode

State Reg

Inputs

Outputs

Control Logic Multicycle
Datapath

1

Address Select Logic

Adder

Types of “branching”
• Set state to 0
• Dispatch (state 1 & 2)
• Use incremented state
 number

cs 152 multicontroller..21 ©DAP & SIK 1995

Sequencer-based control unit details

Opcode

State Reg

Inputs
Control Logic

1

Address
Select
Logic

Adder

Dispatch ROM 1
Op Name State
000000 Rtype 0110
000010 jmp 1001
000100 beq 1000
001011 ori 1010
100011 lw 0010
101011 sw 0010

Dispatch ROM 2
Op Name State
100011 lw 0011
101011 sw 0101

ROM2 ROM1

Mux

0

3 012

cs 152 multicontroller..22 ©DAP & SIK 1995

Implementing Control with a ROM

° Instead of a PLA, use a ROM with one word per state (“Control word”)

State number Control Word Bits 18-2 Control Word Bits 1-0

 0 10010100000001000 11
 1 00000000010011000 01
 2 00000000000010100 10
 3 00110000000010100 11
 4 00110010000010110 00
 5 00101000000010100 00
 6 00000000001000100 11
 7 00000000001000111 00
 8 01000000100100100 00
 9 10000001000000000 00

10 … 11
11 … 00

cs 152 multicontroller..23 ©DAP & SIK 1995

Initial Representation Finite State Diagram Microprogram

Sequencing Control Explicit Next State Microprogram counter
 Function + Dispatch ROMs

Logic Representation Logic Equations Truth Tables

Implementation Technique PLA ROM

° ROM can be thought of as a sequence of control words

° Control word can be thought of as instruction: “microinstruction”

° Rather than program in binary, use assembly language

Next Iteration: Using Microprogram for Representation

“hardwired control” “microprogrammed control”

cs 152 multicontroller..24 ©DAP & SIK 1995

Break (5 Minutes)

cs 152 multicontroller..25 ©DAP & SIK 1995

Microprogramming
° Control is the hard part of processor design

° Datapath is fairly regular and well-organized

° Memory is highly regular

° Control is irregular and global

Microprogramming:

-- A Particular Strategy for Implementing the Control Unit of a
 processor by "programming" at the level of register transfer
 operations

Microarchitecture:

-- Logical structure and functional capabilities of the hardware as
 seen by the microprogrammer

Historical Note:

IBM 360 Series first to distinguish between architecture & organization
Same instruction set across wide range of implementations, each with
 different cost/performance

cs 152 multicontroller..26 ©DAP & SIK 1995

Macroinstruction Interpretation

Main
Memory

execution
unit

control
memory

CPU

ADD
SUB
AND

DATA

.

.

.

User program
plus Data

this can change!

AND microsequence

e.g., Fetch
 Calc Operand Addr
 Fetch Operand(s)
 Calculate
 Save Answer(s)

one of these is
mapped into one
of these

cs 152 multicontroller..27 ©DAP & SIK 1995

Variations on Microprogramming

° Horizontal Microcode

– control field for each control point in the machine

° Vertical Microcode

– compact microinstruction format for each class of microoperation

branch: µseq-op µadd

execute: ALU-op A,B,R

memory: mem-opS, D

µseq µaddr A-mux B-mux bus enables register enables

Horizontal
Vertical

cs 152 multicontroller..28 ©DAP & SIK 1995

Extreme Horizontal

input
selectN3 N2 N1 N0. . .

13

Incr PC
ALU control

1 bit for each loadable register
 enbMAR
 enbAC
 . . .

Depending on bus organization, many potential control combinations
 simply not wrong, i.e., implies transfers that can never happen at
 the same time.

Makes sense to encode fields to save ROM space

Example: gate Rx and gate Ry to same bus should never happen
 encoded in single bit which is decoded rather than two separate bits

NOTE: encoding should be just sufficient that parallel actions that the
 datapath supports should still be specifiable in a single microinstruction

cs 152 multicontroller..29 ©DAP & SIK 1995

Microprogramming (example)

° use of ROM/RAM to generate control points rather than through
 discrete logic
° including control of the next-state logic (the microsequencer)

Horizontal Microprogramming
 1 column in the control ROM for each control line in the datapath

i
n
p
u
t

a b a b a b a b

A0 A1 A2 A3

4:1 MUX
. . .

other
control
outputs

state reg

MUX

MUX
N

ROM
Addr

s
e
l
e
c
t

i
n
p
u
t

s
e
l
e
c
t

2 SequencerN

ALU
mode

Reg Xfer

dst src

DECDEC

gateACtoBus
gatePCtoBus

. . .

enable
register
to be
loaded
from
bus MUX

ready
ac<15>
opcode1
opcode2
. . .

cs 152 multicontroller..30 ©DAP & SIK 1995

More Vertical Format

src dst

D
E
C

D
E
C

other control fields next states inputs

MUX

PC <- PC + 1

Some of these may have
nothing to do with registers!

Multiformat Microcode:
1 3 6

1 3 3 3

0 cond next address

1 dst src alu

D
E
C

D
E
C

Branch Jump

Register Xfer Operation

cs 152 multicontroller..31 ©DAP & SIK 1995

Controller Implementation

MIR

D
S
T

S
R
C

enb enb

ld A
ld B

gateIR
gatePC

.

.

.

.

.

.

A B

AC

uPC clkM
U
X

ld
cnt
clr

enb
enb

enb

0
1
2
.
.
.

10
reg xfer

11
ALU Op

0x
Branch

from rest of microword,
perhaps concatenated
or passed thru the ALU
 (PC relative)

cs 152 multicontroller..32 ©DAP & SIK 1995

Hierarchy of States

Not all critical control information is derived from control logic

E.g., IR contains useful control information, such as register sources,
 destinations, opcodes, etc.

Register
File

R
S
1

D
E
C

R
S
2

D
E
C

R
D

D
E
C

op rs1 rs2 rdIR
to
control

enable
signals
from
control

cs 152 multicontroller..33 ©DAP & SIK 1995

Horizontal vs. Vertical Microprogramming

NOTE: previous organization is not TRUE horizontal microprogramming;
 register decoders give flavor of encoded microoperations

Most microprogramming-based controllers vary between:

 horizontal organization (1 control bit per control point)

 vertical organization (fields encoded in the control memory and
 must be decoded to control something)

Horizontal

+ more control over the potential
 parallelism of operations in the
 datapath

- uses up lots of control store

Vertical

+ easier to program, not very
 different from programming
 a RISC machine in assembly
 language

- extra level of decoding may
 slow the machine down

cs 152 multicontroller..34 ©DAP & SIK 1995

Vax Microinstructions

VAX Microarchitecture:

96 bit control store, 30 fields, 4096 µinstructions for VAX ISA
encodes concurrently executable "microoperations"

USHF UALU USUB UJMP

11 063656895 87 84

001 = left
010 = right
 .
 .
 .
101 = left3

010 = A-B-1
100 = A+B+1

00 = Nop
01 = CALL
10 = RTN

Jump
Address

Subroutine
Control

ALU
Control

ALU Shifter
Control

cs 152 multicontroller..35 ©DAP & SIK 1995

Legacy Software and Microprogramming

° IBM bet company on 360 Instruciton Set Architecture (ISA):
single instruction set for many classes of machines (8-bit to 64-bit)

° Stewart Tucker stuck with job of what to do about software
compatability

° If microprogramming could easily do same instruction set on many
different microarchitectures, then why couldn’t multiple microprograms
do multiple instruction sets on the same microarchitecture?

° Coined term “emulation”: instruction set interpreter in microcode for
non-native instruction set

° Very successful: in early years of IBM 360 it was hard to know whether
old instruction set or new instruction set was more frequently used

cs 152 multicontroller..36 ©DAP & SIK 1995

Microprogramming Pros and Cons

° Ease of design

° Flexibility

• Easy to adapt to changes in organization, timing, technology

• Can make changes late in design cycle, or even in the field

° Can implement very powerful instruction sets (just more control
memory)

° Generality

• Can implement multiple instruction sets on same machine.

• Can tailor instruction set to application.

° Compatibility

• Many organizations, same instruction set

° Costly to implement

° Slow

cs 152 multicontroller..37 ©DAP & SIK 1995

Microprogramming one inspiration for RISC

° If simple instruction could execute at very high clock rate…

° If you could even write compilers to produce microinstructions…

° If most programs use simple instructions and addressing modes…

° If microcode is kept in RAM instead of ROM so as to fix bugs …

° If same memory used for control memory could be used instead as
cache for “macroinstructions”…

° Then why not skip instruction interpretation by a microprogram and
simply compile directly into lowest language of machine?

cs 152 multicontroller..38 ©DAP & SIK 1995

Summary: Multicycle Control

° Microprogramming and hardwired control have many similarities,
perhaps biggest difference is initial representation and ease of change
of implementation, with ROM generally being easier than PLA

Initial Representation Finite State Diagram Microprogram

Sequencing Control Explicit Next State Microprogram counter
 Function + Dispatch ROMs

Logic Representation Logic Equations Truth Tables

Implementation Technique PLA ROM
“hardwired control” “microprogrammed control”

cs 152 µprog..1 ©DAP & SIK 1995

March 3, 1995

Dave Patterson (patterson@cs) and
Shing Kong (shing.kong@eng.sun.com)

Slides available on http://http.cs.berkeley.edu/~patterson

CS152
Computer Architecture and Engineering

Lecture 13: Microprogramming and Exceptions

cs 152 µprog..2 ©DAP & SIK 1995

Review of a Multiple Cycle Implementation

° The root of the single cycle processor’s problems:

• The cycle time has to be long enough for the slowest instruction

° Solution:

• Break the instruction into smaller steps

• Execute each step (instead of the entire instruction) in one cycle

- Cycle time: time it takes to execute the longest step

- Keep all the steps to have similar length

• This is the essence of the multiple cycle processor

° The advantages of the multiple cycle processor:

• Cycle time is much shorter

• Different instructions take different number of cycles to complete

- Load takes five cycles

- Jump only takes three cycles

• Allows a functional unit to be used more than once per instruction

cs 152 µprog..3 ©DAP & SIK 1995

Review: Multiple Cycle Datapath

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr

32

A
L

U

32
32

ALUOp

ALU
Control

Instruction R
eg

32

IRWr

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr

ALUSelA

Mux 01

RegDst

M
ux

0

1

32

PC

MemtoReg

Extend

ExtOp

M
ux

0

1
32

0

1

2
3

4

16Imm 32

<< 2

ALUSelB

M
ux

1

0

Target
32

Zero

Zero
PCWrCond PCSrc BrWr

32

IorD

cs 152 µprog..4 ©DAP & SIK 1995

Overview of the Two Lectures

° Control may be designed using one of several initial representations.
The choice of sequence control, and how logic is represented, can then
be determined independently; the control can then be implemented with
one of several methods using a structured logic technique.

Initial Representation Finite State Diagram Microprogram

Sequencing Control Explicit Next State Microprogram counter
 Function + Dispatch ROMs

Logic Representation Logic Equations Truth Tables

Implementation Technique PLA ROM
“hardwired control” “microprogrammed control”

cs 152 µprog..5 ©DAP & SIK 1995

Initial Representation: Finite State Diagram

1: PCWr, IRWr
ALUOp=Add

Others: 0s

x: PCWrCond
RegDst, Mem2R

Ifetch

1: BrWr, ExtOp
ALUOp=Add

Others: 0s

x: RegDst, PCSrc
ALUSelB=10

IorD, MemtoReg

Rfetch/Decode

1: PCWrCond

ALUOp=Sub

x: IorD, Mem2Reg
ALUSelB=01

RegDst, ExtOp

ALUSelA

BrComplete

PCSrc

1: RegDst

ALUOp=Rtype
ALUSelB=01

x: PCSrc, IorD
MemtoReg

ALUSelA

ExtOp

RExec

1: RegDst, RegWr
ALUOp=Rtype

ALUselA

x: IorD, PCSrc
ALUSelB=01

ExtOp

Rfinish

ALUOp=Or

IorD, PCSrc

1: ALUSelA

ALUSelB=11
x: MemtoReg

OriExec

1: ALUSelA

ALUOp=Or

x: IorD, PCSrc

RegWr

ALUSelB=11

OriFinish

ALUOp=Add

PCSrc

1: ExtOp

ALUSelB=11

x: MemtoReg

ALUSelA

AdrCal

ALUOp=Add
x: PCSrc,RegDst

1: ExtOp

ALUSelB=11

MemtoReg

MemWr
ALUSelA

SWMem

ALUOp=Add
x: MemtoReg

1: ExtOp

ALUSelB=11
ALUSelA, IorD

PCSrc

LWmem

ALUOp=Add
x: PCSrc

1: ALUSelA

ALUSelB=11
MemtoReg

RegWr, ExtOp

IorD

LWwr

lw or sw

lw sw
Rtype

Ori

beq

0
1 8

10

653

2

4
7

11

cs 152 µprog..6 ©DAP & SIK 1995

Sequencing Control: Explicit Next State Function

° Next state number is encoded just like datapath controls

Opcode State Reg

Inputs

O
u
t
p
u
t
s

Control Logic

Multicycle
Datapath

cs 152 µprog..7 ©DAP & SIK 1995

Implementation Technique: Programmed Logic Arrays

° Each output line the logical OR of logical AND of input lines or their
complement: AND minterms specified in top AND plane, OR sums
specified in bottom OR plane

Op5
Op4
Op3
Op2
Op1
Op0
S3
S2
S1
S0

NS3
NS2
NS1
NS0

lw = 100011
sw = 101011
R = 000000
ori = 001011
beq = 000100
jmp = 000010

0 = 0000
1 = 0001
2 = 0010
3 = 0011
4 = 0100
5 = 0101

6 = 0110
7 = 0111
8 = 1000
9 = 1001

10 = 1010
11 = 1011

cs 152 µprog..8 ©DAP & SIK 1995

Sequencer-based control unit details

Opcode

State Reg

Inputs
Control Logic

1

Address
Select
Logic

Adder

Dispatch ROM 1
Op Name State
000000 Rtype 0110
000010 jmp 1001
000100 beq 1000
001011 ori 1010
100011 lw 0010
101011 sw 0010

Dispatch ROM 2
Op Name State
100011 lw 0011
101011 sw 0101

ROM2 ROM1

Mux

0

3 012

cs 152 µprog..9 ©DAP & SIK 1995

Implementing Control with a ROM

° Instead of a PLA, use a ROM with one word per state (“Control word”)

State number Control Word Bits 18-2 Control Word Bits 1-0

 0 10010100000001000 11
 1 00000000010011000 01
 2 00000000000010100 10
 3 00110000000010100 11
 4 00110010000010110 00
 5 00101000000010100 00
 6 00000000001000100 11
 7 00000000001000111 00
 8 01000000100100100 00
 9 10000001000000000 00

10 … 11
11 … 00

cs 152 µprog..10 ©DAP & SIK 1995

Macroinstruction Interpretation

Main
Memory

execution
unit

control
memory

CPU

ADD
SUB
AND

DATA

.

.

.

User program
plus Data

this can change!

AND microsequence

e.g., Fetch
 Calc Operand Addr
 Fetch Operand(s)
 Calculate
 Save Answer(s)

one of these is
mapped into one
of these

cs 152 µprog..11 ©DAP & SIK 1995

Variations on Microprogramming

° Horizontal Microcode

– control field for each control point in the machine

° Vertical Microcode

– compact microinstruction format for each class of microoperation

branch: µseq-op µadd

execute: ALU-op A,B,R

memory: mem-opS, D

µseq µaddr A-mux B-mux bus enables register enables

cs 152 µprog..12 ©DAP & SIK 1995

Microprogramming Pros and Cons

° Ease of design

° Flexibility

• Easy to adapt to changes in organization, timing, technology

• Can make changes late in design cycle, or even in the field

° Can implement very powerful instruction sets (just more control
memory)

° Generality

• Can implement multiple instruction sets on same machine.
(Emulation)

• Can tailor instruction set to application.

° Compatibility

• Many organizations, same instruction set

° Costly to implement

° Slow

cs 152 µprog..13 ©DAP & SIK 1995

Outline of Today’s Lecture

° Recap (5 minutes)

° Microinstruction Format Example (15 minutes)

° Questions and Administrative Matters (5 minutes)

° Do-it-yourself Microprogramming (25 minutes)

° Break (5 minutes)

° Exceptions (25 minutes)

cs 152 µprog..14 ©DAP & SIK 1995

Designing a Microinstruction Set

° Start with list of control signals

° Group signals together that make sense: called “fields”

° Places fields in some logical order (ALU operation & ALU operands first
and microinstruction sequencing last)

° Create a symbolic legend for the microinstruction format, showing
name of field values and how they set the control signals

° To minimize the width, encode operations that will never be used at the
same time

cs 152 µprog..15 ©DAP & SIK 1995

Start with list of control signals, grouped into fields

Signal name Effect when deasserted Effect when asserted
ALUSelA 1st ALU operand = PC 1st ALU operand = Reg[rs]
RegWrite None Reg. is written
MemtoReg Reg. write data input = ALU Reg. write data input = memory
RegDst Reg. dest. no. = rt Reg. dest. no. = rd
TargetWrite None Target reg. = ALU
MemRead None Memory at address is read
MemWrite None Memory at address is written
IorD Memory address = PC Memory address = ALU
IRWrite None IR = Memory
PCWrite None PC = PCSource
PCWriteCond None IF ALUzero then PC = PCSource

Signal name Value Effect
ALUOp 00 ALU adds
 01 ALU subtracts
 10 ALU does function code

11 ALU does logical OR
ALUSelB 000 2nd ALU input = Reg[rt]
 001 2nd ALU input = 4
 010 2nd ALU input = sign extended IR[15-0]
 011 2nd ALU input = sign extended, shift left 2 IR[15-0]

100 2nd ALU input = zero extended IR[15-0]
PCSource 00 PC = ALU
 01 PC = Target
 10 PC = PC+4[29-26] : IR[25–0] << 2

cs 152 µprog..16 ©DAP & SIK 1995

Start with list of control signals, cont’d

° For next state function (next microinstruction address),
 use Sequencer-based control unit from last lecture

Signal Value Effect
Sequen 00 Next µaddress = 0
 -cing 01 Next µaddress = dispatch ROM 1

10 Next µaddress = dispatch ROM 2
11 Next µaddress = µaddress + 1

Opcode

State Reg

1

Address
Select
Logic

Adder

ROM2 ROM1

Mux

0

3 012

cs 152 µprog..17 ©DAP & SIK 1995

Microinstruction Format

Field Name Width Control Signals Set

ALU Control 2 ALUOp

SRC1 1 ALUSelA

SRC2 3 ALUSelB

ALU Destination 4 RegWrite, MemtoReg, RegDst, TargetWrite

Memory 3 MemRead, MemWrite, IorD

Memory Register 1 IRWrite

PCWrite Control 4 PCWrite, PCWriteCond, PCSource

Sequencing 2 AddrCtl

Total 20

cs 152 µprog..18 ©DAP & SIK 1995

Legend of Fields and Symbolic Names
Field Name Values for Field Function of Field with Specific Value
ALU Add ALU adds

Func code ALU subtracts
Subt. ALU does function code
Or ALU does logical OR

SRC1 PC 1st ALU input = PC
rs 1st ALU input = Reg[rs]

SRC2 4 2nd ALU input = 4
Extend 2nd ALU input = sign ext. IR[15-0
Extend0 2nd ALU input = zero ext. IR[15-0]
Extshft 2nd ALU input = sign ex., sl IR[15-0]
rt 2nd ALU input = Reg[rt]

ALU destination Target Target = ALU
rd Reg[rd] = ALU

Memory Read PC Read memory using PC
Read ALU Read memory using ALU output
Write ALU Write memory using ALU output

Memory register IR IR = Mem
Write rt Reg[rt] = Mem
Read rt Mem = Reg[rt]

PC write ALU PC = ALU output
Target-cond. IF ALU Zero then PC = Target
jump addr. PC = PCSource

Sequencing Seq Go to sequential µinstruction
Fetch Go to the first microinstruction
Dispatch i Dispatch using ROMi (1 or 2).

cs 152 µprog..19 ©DAP & SIK 1995

Microprogram it yourself!

Label ALU SRC1 SRC2 ALU Dest. Memory Mem. Reg. PC Write Sequencing

Fetch Add PC 4 Read PC IR ALU Seq

cs 152 µprog..20 ©DAP & SIK 1995

Questions and Administrative Matters

° “Midterm” for instructors and TAs: constructive criticism by Friday

• Please put your name, as I want to hear from everyone

• If you want to submit an anonymous form, just take a second copy

• Be careful what you wish for, it may come true

• Return in class today, right after 5 minute break (take another if
don’t have one)

° Lecture next Wednesday March 8 is moved from 306 Soda to ??
because of a conference that day

° Lab 4 progress report in discussion section March 8-10; project also
due in discussion sections March 15 to 17; everyone needs to be there
for both meetings

° Read the course newsgroup to keep uptodate on latest news

cs 152 µprog..22 ©DAP & SIK 1995

Break (5 Minutes)

° Turn in class surveys!

cs 152 µprog..23 ©DAP & SIK 1995

Exceptions and Interrupts

° Control is hardest part of the design

° Hardest part of control is exceptions and interrupts

• events other than branches or jumps that change the normal flow
of instruction execution

• exception is an unexpected event from within the processor;
e.g., arithmetic overflow

• interrupt is an unexpected event from outside the processor;
e.g., I/O

° MIPS convention: exception means any unexpected change in control
flow, without distinguishing internal or external;
use the term interrupt only when the event is externally caused.

Type of event From where? MIPS terminology
I/O device request External Interrupt
Invoke OS from user program Internal Exception
Arithmetic overflow Internal Exception
Using an undefined instruction Internal Exception
Hardware malfunctions Either Exception or Interrupt

cs 152 µprog..24 ©DAP & SIK 1995

How are Exceptions Handled?

° Machine must save the address of the offending instruction in the EPC
(exception program counter)

° Then transfer control to the OS at some specified address

• OS performs some action in response, then terminates or returns
using EPC

° 2 types of exceptions in our current implementation:
undefined instruction and an arithmetic overflow

° Which Event caused Exception?

• Option 1 (used by MIPS): a Cause register contains reason

• Option 2 Vectored interrupts: address determines cause.

- addresses separated by 32 instructions

- E.g.,

Exception Type Exception Vector Address (in Binary)
Undefined instruction 01000000 00000000 00000000 00000000two
Arithmetic overflow 01000000 00000000 00000000 01000000two

cs 152 µprog..25 ©DAP & SIK 1995

Additions to MIPS ISA to support Exceptions

° EPC–a 32-bit register used to hold the address of the affected
instruction.

° Cause–a register used to record the cause of the exception. In the MIPS
architecture this register is 32 bits, though some bits are currently
unused. Assume that the low-order bit of this register encodes the two
possible exception sources mentioned above: undefined instruction=0
and arithmetic overflow=1.

° 2 control signals to write EPC and Cause

° Be able to write exception address into PC, increase mux to add as
input 01000000 00000000 00000000 00000000two

° May have to undo PC = PC + 4, since want EPC to point to offending
instruction (not its successor); PC = PC - 4

cs 152 µprog..26 ©DAP & SIK 1995

How Control Detects Exceptions

° Undefined Instruction–detected when no next state is defined from state
1 for the op value.

• We handle this exception by defining the next state value for all op
values other than lw, sw, 0 (R-type), jmp, beq, and ori as new state
12.

• Shown symbolically using “other” to indicate that the op field does
not match any of the opcodes that label arcs out of state 1.

° Arithmetic overflow–Chapter 4 included logic in the ALU to detect
overflow, and a signal called Overflow is provided as an output from the
ALU. This signal is used in the modified finite state machine to specify
an additional possible next state for state 7

° Note: Challenge in designing control of a real machine is to handle
different interactions between instructions and other exception-causing
events such that control logic remains small and fast.

• Complex interactions makes the control unit the most challenging
aspect of hardware design

cs 152 µprog..27 ©DAP & SIK 1995

Changes to Finite State Diagram to Detect Exceptions

1: PCWr, IRWr
ALUOp=Add

Others: 0s

x: PCWrCond
RegDst, Mem2R

Ifetch

1: BrWr, ExtOp
ALUOp=Add

Others: 0s

x: RegDst, PCSrc
ALUSelB=10

IorD, MemtoReg

Rfetch/Decode

1: PCWrCond

ALUOp=Sub

x: IorD, Mem2Reg
ALUSelB=01

RegDst, ExtOp

ALUSelA

BrComplete

PCSrc

1: RegDst

ALUOp=Rtype
ALUSelB=01

x: PCSrc, IorD
MemtoReg

ALUSelA

ExtOp

RExec

1: RegDst, RegWr
ALUOp=Rtype

ALUselA

x: IorD, PCSrc
ALUSelB=01

ExtOp

Rfinish

ALUOp=Or

IorD, PCSrc

1: ALUSelA

ALUSelB=11
x: MemtoReg

OriExec

1: ALUSelA

ALUOp=Or

x: IorD, PCSrc

RegWr

ALUSelB=11

OriFinish

ALUOp=Add

PCSrc

1: ExtOp

ALUSelB=11

x: MemtoReg

ALUSelA

AdrCal

ALUOp=Add
x: PCSrc,RegDst

1: ExtOp

ALUSelB=11

MemtoReg

MemWr
ALUSelA

SWMem

ALUOp=Add
x: MemtoReg

1: ExtOp

ALUSelB=11
ALUSelA, IorD

PCSrc

LWmem

ALUOp=Add
x: PCSrc

1: ALUSelA

ALUSelB=11
MemtoReg

RegWr, ExtOp

IorD

LWwr

lw or sw

lw sw
Rtype

Ori

beq

0
1 8

10

653

2

4
7

11

Other

12

Overflow

13

cs 152 µprog..28 ©DAP & SIK 1995

Extra States to Handle Exceptions

1: PCWr, IRWr
ALUOp=Add

Others: 0s

x: PCWrCond
RegDst, Mem2R

Ifetch

1: BrWr, ExtOp
ALUOp=Add

Others: 0s

x: RegDst, PCSrc
ALUSelB=10

IorD, MemtoReg

Rfetch/Decode

1: RegDst

ALUOp=Rtype
ALUSelB=01

x: PCSrc, IorD
MemtoReg

ALUSelA

ExtOp

RExec

1: RegDst, RegWr
ALUOp=Rtype

ALUselA

x: IorD, PCSrc
ALUSelB=01

ExtOp

Rfinish

ALUOp, ALUSelB

0: IntCause
1: CauseWrite

Ill Instr

OVflw

ALUOp=Sub
x: MemtoReg

ALUSelB=01
0: ALUSelA

PCSrc,…

PCdec

1: PCWr
PCSrc=11PCex

lw or sw

Rtype
ori

beq

0
1

614

15

7

Other

12

Overflow

13

…

…

…
Others: 0s

x: RegDst, PCSrc

IorD, MemtoReg

ALUOp, ALUSelB

1: IntCause
1: CauseWrite

Others: 0s

x: RegDst, PCSrc

IorD, MemtoReg

1: EPCWrite

ALUOp, ALUSelB

Others: 0s

x: RegDst,

IorD, MemtoReg

cs 152 µprog..29 ©DAP & SIK 1995

What happens to Instruction with Exception?

° Some problems could occur in the way the exceptions are handled.

° For example, in the case of arithmetic overflow, the instruction causing
the overflow completes writing its result, because the overflow branch
is in the state when the write completes.

° However, the architecture may define the instruction as having no effect
if the instruction causes an exception; MIPS specifies this.

° When get to virtual memory we will see that certain classes of
exceptions prevent the instruction from changing the machine state.

° This aspect of handling exceptions becomes complex and potentially
limits performance.

cs 152 µprog..30 ©DAP & SIK 1995

Summary

° Control is hard part of computer design

° Microprogramming specifies control like assembly language
programming instead of finite state diagram

° Next State function, Logic representation, and implementation
technique can be the same as finite state diagram, and vice versa

° Exceptions are the hard part of control

° Need to find convenient place to detect exceptions and to branch to
state or microinstruction that saves PC and invokes the operating
system

° As we get pipelined CPUs that support page faults on memory accesses
which means that the instruction cannot complete AND you must be
able to restart the program at exactly the instruction with the exception,
it gets even harder

